RHEOLOGY, Fundamentals, tools, examples
Mária Minárová
Stavebná fakulta STU Bratislava
Abstract:
Since rheology is quite a young science, there are still a lot of issues to be studied, observed and explored. This book is intended to inspiring and stimulating engineers, material scientists, chemists, mathematicians or their teams to find out a beauty of rheology, possibilities of its exploitation and excitement of the rheological investigation.
Built up upon the fundamentals, existing tools used, or the tools elaborated by author, four themes are explored in more detail: 1. biological material – human plantar aponeurosis tissue under the creep test and relaxation test; 2. viscoelastic structure subject to a dynamical load; 3. viscoelastoplastic model of concrete; 4. dissipation of energy as one of the decisive factor justifying or not, the linear approach in subsequent investigation.
Conditional stiffness, Duhamel hereditary integrals, time dependent moduli, Prony series, variation inequalities, etc., are used as tools herein. Everything is built up on fundamentals, thermodynamic consistency is required and examined.
DOI: 10.61544/EUAS3846
Literatúra:
[1] Benča, Š.: Nonlinear Mechanical Tasks solved by Finite Element Method (in Slovak), STU Bratislava, 2009
[2] Beňa, J., Kossaczký, E.: Basis of modelling Theory, Publishing house VEDA, Bratislava, 1981
[3] Brilla, J.: Approximative Solution of Viscoelastic Bending of Anisotropic Plates (In Slovak), Publishing house VEDA, Bratislava, 1970
[4] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions, Applied Mathematical Sciences, Vol. 121, Springer-Verlag, New York, 1996
[5] Chen, T.: Determining a Prony Series for a Viscoelastic Material form Time Varying Strain Data NASA, 2000
[6] Champeney, D. C.: Fourier Transforms and their physical applications, Academic Press, London and N. Y., London, 1973
[7] Christensen, R. M.: Theory of Viscoelasticity. An Introduction, Academic Press, N. Y., London, 1974
[8] Dický, J., Mistríková, Z., Sumec, J. et al.: Elasticity and Plasticity in Civil Engineering (In Slovak), Slovak Technical University Bratislava, 2007
[9] Eck, Ch., Garcke, H., Knaber. P.: Mathematical modelling, Springer International Publishing, 2017
[10] Eleuteri, M., Gavioli, Ch., Kopfová, J.: Fatigue and phase transition in an oscillating elastoplastic beam, In: Mathematical Modelling of Natural Phenomena, Vol. 15, 2020
[11] Eleuteri, M., Kopfová, J.: On a new model for fatigue and phase transition in an oscillating elastoplas tic plate, In: Journal of Differential Equations, Vol. 265, No. 5, 2018
[12] Eleuteri, M., Kopfová, J.: Elasto-plastic contact problems with heat exchange and fatigue, In: Journal of Mathematical Analysis and Applications, Vol. 459, No. 1, 2018
[13] Ferry, J. D.: Viscoelastic properties of polymers, J. Wiley & Sons, New York,1961
[14] Finney, T.: Calculus and Analytical geometry, 7th edition, Addison Wesley Publishing company, 1988
[15] Hruštinec, L., Kuzma, J.: The Analysis of Deformations in the Subsoil of the Hydropower Plant in Gabčíkovo, In: XIVth Danube - European Conference on Geotechnical Engineering, 2010
[16] Huang, B. V., Kuang, J. H., Tseng, J. G., Wang, J. C., Qiu, Y. X.: Seismic Analysis of a Viscoelastic damping Isolator, In: Materials Science and Engineering, Vol. 2, 2015
[17] Janaideh, M. A., P. Krejčí: A rheological model for the rate-dependent Prandtl-Ishlinskii model In: 52nd IEEE Conference on Decision and Control, Firenze, Italy, 2013
[18] Krasnosel’skii, M. A., Pokrovskii, A. V.: Systems with Hysteresis. Springer-Verlag, Berlin, 1983
[19] Kopfová, J., Minárová, M., Sumec. J.: Visco - elasto plastic modelling, In: Proc. of EQUADIFF 2017, SPEK TRUM STU Publishing, 2018
[20] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakuto Intern. Ser. Math. Sci. Appl., Vol. 8, Gakkotosho, Tokyo, 1996
[21] Kuhnen, K.: Inverse Steuerung piezoelektrischer Aktoren mit Hysterese, Kriech und Superpositionsoperatoren (Berichte aus der Steuerungs und Regelung stechnik), Gebundene Ausgabe, 2001
[22] Lakes, R. S.: Viscoelastic Solids, CRC Press: Boca Raton, Florida, 1998
[23] Lazan, B. L.: Damping of Materials and Members in Structural Mechanics, Pergamon Press, New York, 1968
[24] Minárová, M.: Mathematical modelling of Phenomeno logical Material Properties – Differential Operator Forms of Constitutive Equations, In: Slovak Journal of Civil Engineering. Vol. 22, No. 4, 2014
[25] Minárová, M.: Rheology. Viscoelastic and Viscoelasto plastic modelling Habilitation thesis, Slovak University of Technology Bratislava, 2018
[26] Minárová, M., Sumec. J.: Mechanical and Mathematical modelling of Visco-elastic Continua-Constitutive Equations, In: Transcations of VSB Ostrava, No. 2, 2013
[27] Minárová, M., Sumec. J.: Differential Equations of a Selected Biological Structures, Proceeding from PRASTAN conference, 2013
[28] Minárová, M., Sumec. J.: Application of more complex rheological models in continuum mechanics, In: Trans actions of the VŠB– technical University of Ostrava, Civil Engineering series No. 2, 2015
[29] Minárová, M., Sumec. J.: Constitutive equations for selected rheological models in linear viscoelasticity, In: Proc. of ESAT; Advances and Trends in Engineering Sciences and Technologies II, Tatranské Matliare, Slovak Republic, CRC Press, 2016
[30] Minárová, M., Sumec. J.: Chain and branched chain structures of rheological models – mathematical modelling and applications, In: Interdisciplinarity in theory and practice, No. 11, 2016
[31] Minárová, M., Sumec. J.: Alternative calculation of the retardation and relaxation spectra for the viscoelastic response of the solid phase materials, In: Proceedia Engineering, Vol. 192 C, EDIS Slovakia, 2017
[32] Minárová, M., Tvrdá, K., Zajícová, S.: Viscoelastic models of Tissues; Mathematical Background and Hysteresis Loops, In: Tatra Mountains Mathematical Publication, 2024 (in print)
[33] Mottahedi, M., Dadalau, A., Hafla, A., Verl, A.: Numerical analysis of relaxation test based on Prony series material models, Sim- Tech, Cluster of excellence, Vol. 1, 2009
[34] Nowacki, W.: Creep Theory (in Polish), Arkady Warsaw, 1963
[35] Pacheco, J. E., Bavastri, C. A., Pereira, J. T.: Viscoelas tic Relaxation Modulus Characterization Using Prony Series, In: Latin American Journal of Solids and Structures, Vol. 12, 2015
[36] Patrascu, M., Stancu, A. F., Pop, F.: HELGA: a heteroge neous encoding lifelike genetic algorithm for population evolution modelling and simulation, Soft Computing, Vol. 18, 2014
[37] Rabotnov, R. J.: Creep of Structural Elements, Moscow: Nauka, 1966
[38] Rashedi, E., Nezamabadi, H., Saryazdi, S.: Gravitational search algorithm, Information Sciences, Vol. 179, issue 13, 2009
[39] Roylance, D.: Engineering Viscoelasticity, Massachusetts, Cambridge University Press, 2001
[40] Shenoy, A. V.: Rheology of Filled Polymer Systems, Kluwer Academic Publishers, Netherlands, 1999
[41] Sinelnikov, R. D.: Atlas of Human anatomy, Part I., Publishing house AVICENUM– Prague, 1980
[42] Sobotka, Z.: Rheology of matters and constructions hmot (in Czech), Praha, Academia publishing house, 1981
[43] Sokolnikoff, I. S.: Mathematical Theory of Elasticity, 2nd ed., New York, McGraw Hill, 1956
[44] Šuklje, L.: Rheological Aspects of Soil Mechanics, Moscow, Stroizdat, 1973
[45] Sumec, J.: Mechanics- Mathematical modelling of Materials Whose Physical Properties are Time– Dependent, Internal Research Report, III- 3- 4/9.4 USTARCH- SAV Bratislava, 1983
[46] Sumec, J., Lichardus, S. and Potúček, M.: Mechanics Mathematical modelling of Materials Whose Physical Properties are Time-Dependent, Internal Research Report No. III-3-4/9.4- ISAR- SAS, Bratislava, Slovakia, 1983
[47] Tschoegl, N. W.: The Phenomenological Theory of Linear Viscoelastic behaviour, Springer- Verlag New York, 1989
[48] Valenta, J.: Biomechanics, Academia, Prague, 1985, (in Czech)
[49] Visintin A.: Modelling and Optimization of Distributed Parameter Systems Applications to engineering: Se lected Proceedings of the IFIP WG7. 2 on Modelling and Optimization of Distributed Parameter Systems with Applications to Engineering, In: Rendiconti del Seminario Matematico della University of Padua, Vol. 77, June 1995
[50] Visintin A.: Rheological models and hysteresis effects, In: Rendiconti del Seminario Matematico della University of Padua, Vol. 77, 1987
[51] Walters, K: History of rheology, Rheology, Vol. 1, 2016
[52] Zajícová, S: Multi element viscoelastic models and determination of their global constitutive relations (in Slovak), bachelor thesis Slovak University of Technology Bratislava, 2019
[53] Zajícová, S.: Relaxation and retardation spectra of complex viscoelastic models, In: Proceeding of PhD students conference 2024. In print
[54] Encyclopedia of Life Support Systems https: //www.eolss.net/ebooklib/sccart.aspx?File = E6 197 01
[55] Physiopedia https: https://www.physio-pedia.com/Aponeurosis