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Since rheology is quite a young science, there are still a lot of issues to
be studied, observed, explored. I hope this book will inspire and stim-
ulate engineers, material scientists, chemists, mathematicians or their
teams to find out a beauty of rheology, possibilities of its exploitation
and excitement of the rheological investigation. Built up upon funda-
mentals, by using existing tools, or the tools introduced in the book,
four themes are explored in more detail: 1. biological material – hu-
man plantar aponeurosis tissue under creep test and relaxation test; 2.
viscoelastic structure subject to a dynamical load; 3. viscoelastoplastic
model of concrete; 4. dissipation of energy as one of the decisive factor
justifying or not, the linear approach in subsequent investigation. Con-
ditional stiffness, Duhamel hereditary integrals, time dependent mod-
uli, Prony series, variation inequalities, etc., are used as tools herein.
Everything is built up on fundamentals, thermodynamic consistency is
required and examined.
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a ak sú vyznačené prípadné zmeny vykonané v diele. Viac informácií o
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Preface

"Fundamentals, tools, examples" - the sub-title of this book dis-
closes the base of its mission. All investigation is built upon
existing explored results. In the book, the reader can find rheo-
logical and viscoelastic preliminaries, together with the smart
tools developed a long time ago or more recently. Although
the book is not intended to bring a complete state-of-the-art of
rheology, I hope that some interesting examples of rheological
investigation together with the applications of the tools will be
beneficial for the reader as well. The considerations proceed
from simple to complex; it is synoptic, and easy to read, raising
new inspiring queries.
The book is destined first of all for engineers, Ph.D. students
or undergraduate students - future engineers; material scien-
tists, chemists, and civil, mechanical or biomechanical engi-
neers. The only prerequisite for the beneficial reading is a basic
knowledge of integral calculus and the theory of linear ordinary
differential equations. All investigations of the author in the
field stand on the preliminaries. Appropriate mathematical tools
are utilized for particular problems.
Alike over all rheology, the main issue focused in this book is de-
voted to basic considerations about the constitutive relations,
i.e. the relations between the stress and the strain, of the so-
called soft materials or non-Newtonian fluids – those matters
which are neither purely elastic nor purely viscous.
As it is usual in mechanical investigating, at its very beginning
there are some basic thermodynamic assumptions that should
be taken into account. The ensuring of the linearity is focused
if possible, together with the validity of the Boltzmann prin-
ciple of superposition. Rheological structural forms and pic-
tograms of rheological models support the synopsis alongside
all considerations. Duhamel convolution integrals, (hereditary
integrals) are employed to perform the explicit dependence of
stress on strain or vice versa. The quantification of dissipative
energy is provided as an important tool for detecting whether
the linear approach is still of satisfactory exactness. Other-
wise, the released (dissipated) heat causes the essential tem-
perature increase that non-negligibly influences some of the
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physical parameters and the non-linear approach has to be em-
ployed. More complex models of the regular or irregular struc-
tures are treated and set up as models of some matters such as
tissues, building materials, soil, etc.
Moreover, the three-dimensional viscoelastic investigation is pro-
vided, along with a short theoretical background and the appli-
cation on a viscoelastic body subjected to a periodic dynamic
load.
Among other examples the human plantar aponeurosis is fo-
cused on and explored in more detail.
A brief overview of viscoelastoplasticity is provided as well, in-
cluding its mathematical background based on the variational
inequalities serving as a tool for coping with a singularity present
there. The viscoelastoplastic study of a simplified model of over-
loaded concrete is appended, performing how the tools work.
The investigation presented in the book was supported by grants
VEGA 1/0036/23, VEGA 1/0155/23 and KEGA 030STU-4/2023.
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Introduction

Rheology studies the deformation and the flow of the matter.
It deals with semi-solids or semi-liquids, i.e. materials with
mechanical properties and mechanical behaviour are situated
somewhere between purely elastic matters (Hookean elastic mat-
ters) and purely viscous (Newtonian) fluids. We say that such
materials exhibit a rheological behaviour. Many soft solid ma-
terials and elastic-viscous liquids can be named, which is the
focus of rheology: metals, polymers, glass, concrete, soil, as-
phalt mixtures, suspensions, gels, pastes, solid biomaterials,
living body liquids such as blood, lymph, lubricants, dilute so-
lutions of polymers and many other materials. These materi-
als are characterized by a flow strongly influenced by their vis-
cosity. Sometimes the viscosity itself undergoes a fundamental
change. Thist can happen due to changes in physical conditions
or significant ambient properties, e.g. temperature, pressure,
electrical potential, etc. We can take the glass as a first ex-
ample of the specific mechanical behaviour depending on the
temperature. The glass starts to flow, and it even undergoes
the phase transition at a sufficiently high temperature and be-
comes solid again after the temperature decreases. As it is ex-
perienced and warned by the glass industry, the melted glass
mass has to be cooled down very slowly, usually in an oven, to
avoid becoming too brittle after the backward solidification. It
is similar for metals and many other materials. However, some
materials, e.g. eggs, solidify under higher temperatures. On
the other hand, there are other influences which can change the
rheological properties of the materials. The viscosity of ketchup
increases when shaken, sugar caramelizes after being melted,
soil consolidates under pressure, etc.
Rheology finds its application in various fields of life. First of all
the material industry has to be mentioned, the polymers and
polymer-based materials are of interest, the newly developed
building materials are being explored; the food industry uses
many soft materials, pastes, foams, etc. Each time the theo-
retical investigation together with laboratory test enables us to
predict the material quality and suitability for its future usage.
The theoretical rheological investigation starts with building up
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a rheological model. The model should match the material as
precisely as possible, concerning the supposed future usage
of the material and the expected load (type and magnitude).
Some simplification is always present in such a procedure. Most
rheological models simulate the materials or devices (see the
viscoelastic damping isolator in Figure 1) within given time in-
tervals of loading, with other physical influences like the tem-
perature or the pressure gradient being either neglected or not.
When the appropriate rheological model is built up, the theo-
retical investigation simulation of various load impacts under
various physical situations can be carried out, and the predic-
tion of the material mechanical behaviour is done.
The book is organized as follows: In the first chapter, we briefly
focus on thermodynamics. Thermodynamics, its laws, the dis-
sipation of energy phenomenon, and the conservation laws are
the essential assumptions that need to be fulfilled before the
rheological investigation. Next chapter refers to rheology and
viscoelasticity. A rheological model itself is described, and the
fundamental elements, the parallel and the serial connection,
are introduced. The standard tests and the mechanical consti-
tutive relations are of interest. The time-dependent material
characteristics, i.e. the relaxation modulus and the creep com-
pliance modulus are set up, followed by the conditional stiffness
differential operator. Furthermore, multi-element viscoelastic
modelling comes into account. Afterwards, multidimensional
viscoelasticity is aimed. Lastly, the plastic element is incor-
porated in a rheological model, and the rheological modelling
beyond the viscoelasticity theory is provided. All investigations
are documented by the corresponding model elaboration at-
tached to each particular issue. Some practical utilization and
applications are also added.

A little bit of history

Rheology is quite a new discipline. Its official origin is dated in
1929, when the first rheological meeting took place in Washing-
ton, and when the official definition of rheology was established.
However, the roots of rheology can be found. And, much earlier,
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Figure 1: Viscoelastic damping isolator [16].

even in antiquity. The most popular ancient rheological state-
ments are "αντα ρϵι" ("Panta rei" - "Everything flows"), told
by the Greek philosopher Heraclitus in the 6th century B.C, and
"The mountains flow before the Lord", told by Jewish prophetess
Deborah around the 12th century B.C. Even her name, Deborah,
served as an inspiration for the naming of the non-dimensional
number ND which quantifies the ability of materials to flow.
ND ∈ [0,1] evaluates the ratio of the time of relaxation to the
time of observation. Deborah knew that the mountains flow, as
everything flows. But the mountains flow before the Lord’s sight
and not before the man’s one. It is so because the man’s life
is too short to observe the folding deformation - the flux of the
mountains which takes centuries or millennia, while the time of
God’s observation is infinite. Then, the marginal values of Deb-
orah number 1 and 0 are respectively attached to pure liquids
and pure solids [51].
In 1678, Robert Hooke introduced the linear law expressing the
relationship between stress and strain; a couple of years later,
in 1687 Isaac Newton introduced his study of the steady shear
flow in fluids. In his Principia (Philosophiae Naturalis Principia
Mathematica) we can find his famous hypothesis: "The resis-
tance which arises from the "lack of slipperiness" of the parts
of the liquid, other things being equal, is proportional to the ve-
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locity with which the parts of the liquid are separated from one
another". This lack of slipperiness is called the viscosity nowa-
days. Both laws are widely used in rheology up to now, the
pure solid-like behaviour and the pure fluid being considered
just as "boundaries". Indeed, every usual materials’ mechani-
cal behaviour stands somewhere between these two extremes.
Later on, scientists like James Clerk Maxwell, Lord Kelvin and
Woldemar Voigt began to use the term "elastic-viscous liquid"
or "elastic liquid" in the second half of the 19th century [51].
The first factual rheological (viscoelastic) test is dated 1835,
when Wilhelm Weber imposed a tension load on the silk threads.
An initial immediate extension of the magnitude Δ appeared
first as expected, but despite the load remaining unchanged,
the prolongation of thread continued, though with a decreas-
ing rate. After the thread prolongation had stopped, the stress
was removed instantaneously. By the expectation, an imme-
diate shortening of the magnitude Δ occurred, and then the
thread continued its shortening more and more slowly, towards
the original length. After a sufficient period of time, the total
recovery was reached again.
Summarizing the previous investigations in the field, Boltzmann
at the very end of the 19th century rearranged the differential
form of constitutive relation into integral (integro-differential)
form, even generalized for three-dimensions.
Boltzmann is also famous for his principle of superposition: "The
value of a characteristic function of a system is equal to the sum
of all changes induced in the system by the driving functions
which have been applied to it throughout its history" [54]. The
superposition principle is widely used along all investigation de-
scribed in this book. At the beginning of the 20th century, John
Henry Poynting and Joseph John Thomson started to use rheo-
logical elements and proposed their graphical representation -
pictograms: the spring as a representative of Hookean elastic
behaviour and a dash-pot as a representative of a Newtonian
flow within the rheological investigation. The Prony series was
first used by Richard Schapery and Sunwoo Park in 1999 in the
attempt of the fit the experimental data with the theoretical in-
vestigation. As it is possible to gain the Prony coefficients from
the experimental data, they are now commonly used in the sci-
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entific community dealing with amorphous polymers. Both the
Boltzmann superposition principle and the regularization were
exploited in the system of linear equations. Afterwards, the re-
current expression of the Prony series form was used.
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Chapter 1

THERMODYNAMICS

1.1 Principles of phenomenology

Alongside our investigation, the general theory for the phe-
nomenological construction of the constitutive equations of non-
living matters is employed, following the physical principles of
the thermodynamic phenomenology, [2, 9]:

• Determinism principle - the status of the body at time t is
determined by its history (stochasticity is not involved)

• Causality principle - the cause evokes an effect,

• Smooth ambient - singularities are regarded just theoreti-
cally,

• Memory (smooth, indifferent, degenerated, etc.) is/is not
taken into account - time invariant and time variant prob-
lems are observed where ageing of matter comes into ac-
count,

• Proper representation - the model has to match with the
represented phenomenon,

• Coordinate system invariance - results released from the
model do not depend on the chosen coordinate system.
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CHAPTER 1. THERMODYNAMICS

1.2 Thermodynamic laws

It is a well-known fact that thermodynamics operates macro-
scopically. It means neither a single particle (atom or molecule)
of solid, liquid or gas is traced, nor an exact motion of the par-
ticles, nor the mutual interaction and the collisions are of inter-
est, since their influence is negligible, and the focus is just on a
global impact of this motion and an interaction with the entire
system. Within the large-scale consideration, the macroscopic
properties of the system are observed. First of all, it is volume,
pressure and temperature; then the related parameters such as
energy, density, mechanical potential, etc.
Thermodynamics has to be taken into account in an investi-
gation of many processes of natural or engineering sciences.
These processes should be thermodynamically consistent, i.e.
they should be in no contradiction with any law of thermody-
namics. All rheological investigations are done in this thermo-
dynamic background. Thorough, the thermodynamic laws are
valid for closed or isolated systems. Indeed, sometimes it is not
an easy task to ensure thermodynamic consistency. Especially
in the case of biological structures dealt with by rheology, e.g.
the human, animal, or herbal tissues that can hardly exist apart
or separated from the organism. That is why these systems
can be regarded neither isolated nor close. Quite the opposite.
They are open systems, which means they interchange energy
and matter with their surroundings.
Although in reality, the thermodynamic laws are valid for either
isolated or closed systems only, necessarily, in the short-term
observation, they are regarded either as isolated or closed ones
[2, 18], and the laws of thermodynamics are used after all.
Let us briefly state the laws of thermodynamics:

1. Inside an isolated system, the energy cannot be created or
destroyed

Δ
�

Uk + Up
�

= Δ

�

W +
∑

α
Hα,

�

, (1.1)

where Δ
�

Uk + Up
�

is the increment of the sum of the kinetic
energy Uk and the inner potential energy Up, Δ

�

W +
∑

αHα
�
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1.2 Thermodynamic laws

is the increment of the sum of work W of the outer forces
per time unit and Hα represents other types of non-mechanical
energy added, supplied heat is included herein - all issues
quantified per volume unit and time unit

�

J
m3s

�

.
If all energy functions in (1.1) are continuously differen-
tiable, the differentiated form of the law is arisen:

d

dt

�

Uk + Up
�

=
d

dt

�

W +
∑

α
Hα

�

. (1.2)

This law is known as the conservation of energy.

2. Heat can never be transformed completely into a work-
performing type of energy. Or (equivalent expression of the
law): Heat does never flow on its own from the colder place
to the warmer one unless a forcing energy is expended, [9]:

ΔS ≥
1

T
ΔQ (1.3)

in the discrete case and

dS

dt
≥
1

T

dQ

dt
(1.4)

if S and Q are continuously differentiable.
Here S

�

J
K

�

is the global entropy of the body, Q [ J] the heat
and T [K] the temperature.
In the case of no loss of the mechanical energy, a com-
pletely reversible process is concerned and the equality in
(1.3) or (1.4) characterize the process

ΔS =
1

T
ΔQ,

dS

dt
=
1

T

dQ

dt
.

Finally, for an irreversible process, energy dissipates, so
the strict inequality in (1.3) and (1.4) comes into account:

ΔS >
1

T
ΔQ,

dS

dt
>
1

T

dQ

dt
.
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CHAPTER 1. THERMODYNAMICS

The equivalent formulation says that the entropy produc-
tion is always non-negative:

�

dS

dt

�

V
=
dS

dt
−
∫

A(t)

qn

T
dA −

∫

V(t)

ρhc

T
dV ≥ 0,

where
�

dS
dt

�

V
the inner entropy production, n the compo-

nent of the unit normal vector to the boundary, q
�

W
m2

�

is

the heat flow density vector component, hc
�

J
s.kg

�

is the
flux coefficient of the non-mechanical energy in mass unit
per time.

3. The entropy magnitude of a system approaches a con-
stant value alongside the temperature approaching abso-
lute zero.
The equivalent formulation says that it is impossible in re-
ality to reach absolute zero temperature.

In our considerations, the first law of thermodynamics will be
mostly referred to.
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Chapter 2

RHEOLOGY

Alongside continuum mechanics, the mechanical response of a
body or a system to a load is focused. It means that the rela-
tion between strain ϵ and stress σ, called constitutive relation
or physical relation is always essential. Within linear elasticity
theory, the proportional relation between stress and strain can
be expressed explicitly; either a stiffness or a compliance ten-
sor is utilized as the material properties parameter. Similarly, in
the linear fluid flow theory, the proportional relation exists be-
tween the stress and the strain rate. Indeed, in more complex
tasks of continuum mechanics, these relations either are not li-
near, since e.g. the physical parameters become dependent on
an unknown function, or an implicit expression is provided while
the explicit forms need additional entries. The time variable and
its derivatives are widely utilized. Moreover, a response differ-
ence during the loading and unloading process called hystere-
sis, [20, 8, 42] occurs. Let us recall that the hysteresis occurs
when the same input yields a different output during loading
and unloading process, i.e. the stress - strain curve during load-
ing differs from that during unloading, see Figure 2.3. Rheol-
ogy studies these relations, where different types of material
response (elastic, viscous, plastic, etc.) act together in synergy.
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RHEOLOGY

Stress and strain tensors

Stress and strain are always essential issues in continuum me-
chanics. They are tied up through a modulus involving the phys-
ical properties of the material. They are referred to alongside all
investigations presented in this book.
Stress is defined as an external deforming force per an area.
Generally, it is a tensor of 2nd-order, a matrix with its nine com-
ponents for three dimensions. However, in equilibrium stage, in
order to ensure the balance of angular momentum, the shear
stresses on two perpendicular planes of a differential element
are equal. From this, the symmetry of stress tensor σj = σj fol-
lows. Consequently, we have to remember six instead of nine
values of the tensor and for the sake of future better handling
we rearrange these six values in a vector:

σ =





σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33



→















σ11
σ22
σ33
σ12
σ13
σ23















. (2.1)

Let us emphasize moreover the subscript convention herein:
The first of two subscripts of stress tensor σ = σj indicates the
normal of the plane element where the stress (force) is applied,
the second subscript indicates the stress component direction.
Similarly ϵ - the strain tensor of the 2nd-order and its symmetry,
i.e.

ϵj =
1

2

�

∂

∂j
+
∂j

∂

�

= ϵj,

in sense of displacement , enables us to use it in the form of a
vector:





ϵ11 ϵ12 ϵ13
ϵ21 ϵ22 ϵ23
ϵ31 ϵ32 ϵ33



→















ϵ11
ϵ22
ϵ33
ϵ12
ϵ13
ϵ23















= ϵ. (2.2)
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Rheological material

Figure 2.1: Creep of a material within its life span. Three phases
of the mechanical behaviour of a material - initial premature
phase, operating time, and failure, [1].

Many materials of ordinary usage regarded as elastic undergo
quite turbulent changes during their life span. Mostly, a strong
non-linearity accompanies the origin of the material. Later on,
the non-linear behaviour usually fades with the material matur-
ing. Only after the maturing, its typical elastic behaviour arrives
and stays with the material until fatigue appears due to over-
loading, depreciation or other reasons for degradation. Then, a
non-linear decay happens, resulting in fatigue and the failure of
the material. An example of material behaviour is provided in
Figure 2.1, therein, subjected to constant stress maintained dur-
ing its whole life span. Various material behaviour is depicted
in Figure 2.2. The mechanical behaviour of a material with time
lapsing can be performed as a split into three phases:
- primary phase - t ∈ 〈t0, t1), origin with a non-linear behaviour
with a high initial deformation rate due to a chemical process,
a temperature or pressure activation while being formed; then
the deformation rate decreases as the material matures.
- secondary phase - t ∈ 〈t1, t2〉, operating life span of the ma-
terial, when no or just slow and linear deformation of a very low
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RHEOLOGY

slope occurs.
- tertiary phase - t > t2, fatigue of the material culminating in
its damage.
The elastic modulus of matured elastic material remains con-
stant or almost constant during the operating time.

Figure 2.2: Stress-strain graphs of materials of characteristic
types, a) - brittle material, b) and c) - tough materials with a
yield point, d) - tough materials without any yield point, [42].

2.1 Rheology and viscoelasticity within

2.1.1 Rheological model and its properties

Rheological model of a material (matter) is a model standing
behind a material as far as mechanical behaviour is concerned.
Such model simulates the mechanical reaction of the material
to an action. In this book, only a static or quasi-static mechani-
cal load is considered an action; accordingly, no vibrations are
induced. Then, under the imposed load, the reaction, i.e. the
mechanical response, is studied. However, rheological material
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2.1 Rheology and viscoelasticity within

response is often determined by other physical circumstances,
e.g. a temperature in the ambient or pressure difference, a
chemical or electrical potential, etc. A rheological model always
consists of several (at least two) fundamental elements con-
nected in various configurations. The aim is always to fit the
real material mechanical behaviour as precisely as required.
Configuration or constellation means that all particular submod-
els and fundamental rheological elements are connected mutu-
ally, either in parallel or in series, creating the final geometry.
Indeed, every fundamental element contributes to the entire
mechanical behaviour, influencing the global constitutive rela-
tion. Hence, both the configuration and the physical relations of
the particular members predestine the global constitutive rela-
tion. The global constitutive relation further theoretically deter-
mines the mechanical behaviour of the rheological model.
Generally, the current rheological material response is influ-
enced not only by the current load magnitude, its duration, and
velocity, but also by the so-called history of the load. For this
reason, an additional time variable reflecting the history of ac-
tion is incorporated into the rheological models.
Since all the observed processes are embedded within the range
of values where those influences are negligible, all considera-
tions in this book are done without the temperature and pres-
sure influences. The processes are regarded as isothermal and
isobaric. Under these assumptions, the formal definition of the
rheological model can be designated as follows.

Definition 1
Let us suppose that the stress function σ and the strain function
ϵ are symmetric tensor functions.
A system that consists of

1. physical (constitutive) relation between σ and ϵ,

2. potential energy Up ≥ 0,

is called the rheological model.

As it is habitual in continuum mechanics, the thermodynamic
consistency of a rheological model is always required:
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Figure 2.3: Examples of hysteresis of rheological models sub-
jected to tension stress; (H)|(M), (H)|(N), (N1) − (N2).

Definition 2
The uni-axial rheological model is thermodynamically consistent
if the quantity called the dissipation rate

U̇d = 〈ϵ̇,σ〉 − U̇p (2.3)

is non-negative in the sense of distributions for all σ, ϵ, [20].
Herein, 〈ϵ̇,σ〉 is the scalar product of strain rate and stress, Ud
stands as the amount of dissipated energy and Up for the po-
tential (stored) energy.
Nevertheless, in Chapter 3.3, quantification of dissipated en-
ergy is provided, which can afflict the linear conception of the in-
vestigation. Namely, the dissipated energy is mostly converted
to heat that spreads to the ambient, resulting in a temperature
increase that can further affect the physical parameters of the
objects. In such a case, the linear approach of exploring is no
longer relevant.
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2.1 Rheology and viscoelasticity within

Remark

1. Unless declared otherwise, verbatim, alongside the book,
the static or quasi-static load is taken into account when
referred to as a "load". In doing so, an entity subjected
to the static or quasi-static load is deformed, but the load
causes no vibrations.

2. The dot above a variable stands for its time derivative
ϵ̇ = dϵ

dt ; analogously double dot stands for its second time

derivative ϵ̈ = d2ϵ
dt2

, and so forth.

3. The expressions constitutive relation, stress-strain relation,
σ ∼ ϵ dependence, physical relations are used equiva-
lently.

2.1.2 Fundamental rheological elements
and their physical properties

Various fundamental rheological elements can be involved in
a rheological model. As far as the mechanical behaviour is
concerned, each of them represents a specific physical feature.
The mechanical behaviour of each element is then governed by
its specific stress-strain (physical) relation. The pictograms of
particular rheological elements are designed in a way that the
reader can anticipate their behaviour under a mechanical load.
Representative abbreviations of fundamental elements (H), (N),
(StV), etc. for Hookean elastic, Newton viscous and Saint-Venant
plastic elements (matters) are of use when creating structural
formulas of particular rheological model, e.g. (H)|(N), (StV)|[(H)−
(N)], see the configuration in Chapter 2.1.3.
Moreover, pictograms of rheological models are used for a bet-
ter synopsis involving the pictograms of fundamental elements
in an appropriate configuration, Figure 2.4. Accordingly, the
Hookean elastic element (H) is graphically substituted by a spring,
the Newton’s viscous (N) matter by a dashpot, the Saint-Venant
plastic element (StV) by two plates superimposed on each other,
friction force supposed on their common area acting against the
applied outer force, etc. Indeed, other rheological elements can

27



RHEOLOGY

take part in the rheological models as well, performing a more
general rheological behaviour. These elements are depicted in
Figure 2.4 together with their graphical symbols and their ab-
breviations. In this book, just three fundamental elements are
used and studied: (H), (N) and (StV), and various models con-
sisting of these elements. In Figure 2.8 the performance of the
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Figure 2.4: Elementary rheological elements, abbreviations and
pictograms: 1) Hookean elastic matter, 2) Saint-Venant’s plas-
tic matter, 3) Newton’s viscous matter, 4) Indurate matter, 5)
Compressive ligature 6) Tensile ligature .

related graphs of the stress-strain relations of elastic, viscous
and plastic elements are provided. For the sake of better ap-
prehension, the pictograms involve arrows denoted by P, rep-
resenting tension force. Of course, in the case of compression
force, the arrows will be of the opposite orientation. Herein P,
tension or compression is imposed, aligned with the degree of
the freedom direction. Habitually, the tension force has a posi-
tive sign, and the pressure force a has negative sign.
Let us have a look at our three elements and their exertion.

Elastic element (H)

In figures, usually a spring is used as a pictogram of an elas-
tic element. The element is concerned purely elastic. Hence,
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2.1 Rheology and viscoelasticity within

the mechanical behaviour is governed by Hook’s law, a linear
stress-strain relation. In tensor form, [7]:

σ = Aϵ (2.4)

It is worth saying that equation (2.4) represents a proportional
relation between 2nd-order tensors ϵ and σ, A being the propor-
tional factor, the 4th-order material tensor, modulus of elastic-
ity.
Indeed, in the case of a tensor to vector alignment in the sense
of (2.1) and (2.2) of both σ and ϵ, A reverts to a matrix. This
matrix is called the anisotropic body tensor. Generally, A in-
volves both volumetric and deviatoric change, see Figure 2.5;
and both phenomena can be regarded separately in the case of
an isotropic material. For this sake, it is worth writing the ma-
trix A as the sum of volumetric and deviatoric matrices Ao and
Ade, respectively. This matrix can be further split into four 3x3
submatrices as in (2.6).

A =
�

X Z
Z Y

�

= Ade + Ao (2.5)

with Z being a zero 3x3 matrix,

Ade =
�

Z Z
Z Y

�

, Ao =
�

X Z
Z Z

�

, (2.6)

X =





1 + 2μ λ λ
λ 1 + 2μ λ
λ λ 1 + 2μ



 ,Y =





2μ 0 0
0 2μ 0
0 0 2μ



 ,

where λ = Eν
(1+ν)(1−2ν) and μ = E

2(1+ν) are the Lamé coefficients
involving the Young modulus of elasticity E and the Poison ratio
number ν.
Due to zero potential energy dissipation of the elastic element
(H) standing either solely or connected in series, the deforma-
tion of (H) is completely reversible. No energy is dissipated
during the loading, which means that all potential energy Up ac-
quired during the loading process is kept and stays ready to be
utilized for complete recovery as soon as the load is removed.
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In the one-dimensional viscoelastic modelling, we use the one
dimensional form of the Hook’s law

σ = Eϵ (2.7)

The potential energy is equal to the energy of deformation herein.
Quantified per volume unit, for continuous ϵ(t) it can be written
in the form of the Stieltjes integral:

Up(t) =
∫ ϵ(t)

ϵ(0)
Eϵ(θ)dϵ(θ) =

1

2
E
�

ϵ2(t) − ϵ2(0)
�

. (2.8)

Expressed in the form of the Riemann integral which will be of
further use in Chapter 3, we have the integral over time

Up(t) =
∫ t

0
ϵ̇(θ)σ(θ)dθ. (2.9)

All energy added to an elastic member during the loading pro-
cess is stored, and no energy is dissipated, which documents
the thermodynamic consistency (2.3) of the elastic member straight-
forwardly, Ud = 0 =⇒ U̇d = 0. The total recovery of the elastic
member arrives by using this potential energy immediately af-
ter the load is given away.
It is interesting to add herein that since the dissipated energy
is equal to zero, both the loading and unloading processes are
equal (without a damping or delay), accordingly no hysteresis
is present, see Figure 2.7, left.

Viscous element (N)

In the figures, the dashpot is usually used as a pictogram of
a viscous element. A Newtonian liquid is thought herein; the
proportionality between the stress and the first time derivative
of strain function is active. In other words, the physical process
is governed by Newton’s law for liquids - the linear relation be-
tween the stress and the strain rate. Besides, the deviatoric
and volumetric components can be expressed and treated sep-
arately in three dimensions:

σde = ηϵ̇de,
σo = ζϵ̇o,

(2.10)
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Figure 2.5: Young modulus of elasticity and shear modulus.

where η and ζ are deviatoric and volumetric proportional mate-
rial tensors, respectively. When, like in our case, incompressible
liquids are considered, i.e. the volume remains constant, only
the deviatoric component takes part in the stress-strain rela-
tion, Figure 2.6. Hence in the uni-axial case, the constitutive
relation of incompressible liquid can be expressed in the form
of a single scalar equation:

σ = ηϵ̇. (2.11)

Here, η [P.s] is the dynamical viscosity.

Remark
1. The kinematic viscosity ζ [m2s−1] is also of use in fluid
flow theory. The relation between these two (kinematic and dy-
namic) viscosities is η = ζ.ρ where ρ [kgm−3] is the density of
the liquid.
2. The term viscosity is utilized in fluid mechanics. Newton’s law
of viscosity stands as governing stress-strain (physical) equa-
tion quantifying the proportionality between the stress and the
strain rate. Newton’s law of viscosity states that under un-
changed temperature, the shear stress between adjacent fluid
layers is proportional to the shear deformation rate between
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Figure 2.6: Shear viscosity of a liquid.

these two layers.
τ = ηγ̇,

where τ [P] is the shear stress of viscous liquid and γ [−] is
the shear deformation. Nevertheless, since we need to combine
the elastic and the flow deformation in viscoelastic exploration,
we will do a unification of the notation herein, using σ for the
shear stress instead of τ and ϵ for the shear strain instead of
γ in the Newton law. The thermodynamic consistency can be
checked for the Newtonian viscous element as well:

U̇d = 〈ϵ̇, σ〉1D − 0 = ϵ̇ · σ = σ2 ≥ 0. (2.12)

Due to the continuity of ϵ(t), the dissipation energy course can
be evaluated by using Newton law (2.11) and in the form of the
Stieltjes integral it is:

Ud(t) =
∫ t

0
ϵ̇(θ)σ(θ)dθ =

∫ ϵ(t)

0
ηϵ̇(θ)dϵ(θ) = η

�

ϵ(t) − ϵ(0)
�

.

(2.13)
Viscous elements act as dampers within the rheological models.
All energy received during loading is dissipated and no potential
energy is stored, Up = 0, in the case of an incompressible liquid.
The deformation process is completely irreversible, see Figure
2.7, right.

Rigid plastic element (StV)

A rigid plastic element is usually graphically represented by
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Figure 2.7: Uni-axial interpretation of the dissipated energy
amount Ud in elastic element (left), in viscoelastic structure
(middle), in viscous matter (right).

two plates superimposed on each other. The friction of a cer-
tain magnitude acts between both plates. The constitutive re-
lation herein is not straightforwardly expressed. Saint-Venant
plastic element (StV) exposed to a tensile or compressive load
does not move at the beginning, until the moment in which the
value of the stress reaches the threshold (tensile or compres-
sive one). If so, the friction resistance is suddenly overcome and
the material becomes plastic immediately, and its deformation
increases linearly and unlimitedly up to the moment when the
load decreases again under the threshold (tensile or compres-
sive one). After that it remains unmoved again. This situation
can be described mathematically by using the following varia-
tional inequality.

Definition 3
Let Z be the space of all admissible stress values with all thresh-
olds situated on its boundary ∂Z. The plasticity is governed by
the following physical principles:

• σ ∈ nt(Z) ensures the persisting rigidity of the body

• σ ∈ ∂Z - the plastic behaviour is triggered
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Figure 2.8: Pictograms and stress-strain graphs in elastic ele-
ment (H) (left), viscous element (N) (middle) and rigid-plastic
element (StV) (right), [19].

• 〈ϵ̇,σ − σ̃〉 ≥ 0, ∀σ̃ ∈ Z

The last principle in Definition 3, is called the Saint-Venant varia-
tional inequality or maximal dissipation rate principle above the
admissible stress values span. It states that while the thresh-
old is not reached, the deformation does not change, i.e. ∀σ ∈
nt(Z)⇒ ϵ̇ = 0, [8, 20].
In the uni-axial case Z = 〈−σC, σT〉 and ∂Z = {−σC, σT}. We as-
sume that σC, σT are two positive constants herein. Therefore,
logically 0 ∈ Z and such a case corresponds to the natural hy-
pothesis that no deformation occurs for σ = 0. This condition is
essential for the thermodynamic consistency of the model. In
Figure 2.8, the fifth and the sixth pictures, an uni-axial represen-
tation of a rigid-plastic body, the graphical interpretation of the
stress-strain relation is performed. The polyline graph is called
the diagram of three branches. Herein, as Z is an interval in
one-dimension, its boundary - the set of its two endpoints - the
negative compressive threshold −σC and the tension threshold
σT . In general σC 6= σT . When any of the thresholds is reached,
the plasticity process starts and persists until the load magni-
tude comes back to the interval (−σC, σT) again and the rigid-
ity comes back, while the permanent (plastic) deformation re-
mains. Since no potential energy is stored, i.e. Up = 0, no
recovery occurs. It has been observed in the laboratory tests
that during plastic deformation the volume change is negligible
[37].

34



2.1 Rheology and viscoelasticity within

In Chapter 2.1.2 both elastic and viscous elements are intro-
duced together with their physical properties. Let us addition-
ally emphasize that during the loading/unloading process:
An ideal elastic material performs no dissipation of the re-
ceived mechanical energy, i.e. all energy gathered within the
loading process is utilized to the process of the complete rever-
sion towards the original stage when the load ceased and there
is no phase shift between the deformation and the stress.
An incompressible viscous material is a liquid that flows flu-
ently, with a constant velocity under constant load. The defor-
mation is not reversible at all and the density of liquid remains
the same during the time the load persists. Herein, the amount
of dissipated energy quantifies the inner structural damping.
We can briefly summarize:

• elastic material ⇒ no dissipated energy

• viscoelastic materials ⇒ partial dissipation of energy

• viscous material ⇒ all energy dissipated

2.1.3 Two types of connection, structural
forms and graphical interpretation
of rheological models

There are two types of fundamental elements connection in
rheological models: in parallel and in series. The connection
is realized in a way that maintains the unique degree of free-
dom. The following considerations are provided for the one-
dimensional case:

Parallel connection is abbreviated as "|" in the structural
rheological forms. Both (or more) elements supposed to be con-
nected in parallel are put one by one to keep a unique degree
of the freedom and interconnected mutually by using two rigid
parallel plates. These plates do not rotate or deform, and do
not flex, they just move in line with the degree of the freedom
of the raised model, i.e. perpendicularly to their longitudinal
axis. The rigid plates are represented by the upper and the
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                (K)                      (M) 

Figure 2.9: (K) - Kelvin-Voigt model (left) and (M) - Maxwell
model (right). Parallel and serial connection of elementary
members (H) and (N).

lower bold horizontal lines in Figure 2.9, left. Herein, the de-
gree of the freedom is vertical. Logically, the movement of the
parallel items, i.e. the displacement of both (or more) com-
ponents coupled in parallel connection remains equal to each
other during all loading and unloading processes. At the same
time, the global stress which originates during loading and un-
loading is equal to the sum of the stress values in particular
components. Since this consideration deals with geometry, cor-
responding equations are called geometric equations:

ϵ = ϵH = ϵStV ,
σ = σH + σStV .

(2.14)

Indices H, StV and N in (2.14) reflect the incidence of the par-
ticular variable with its element, e.g. ϵH is a deformation of
the Hookean element within the configuration, etc. Apparently,
(2.14) can be generalized to n members connected in series:

ϵ = ϵ1 = ϵ2 = ... = ϵ2
σ = σ1 + σ2 + ... + σn.

(2.15)

Serial connection is abbreviated as "-" in the structural rheo-
logical forms. It is realized by joining the elements one after the
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2.2 Match between the material
and its model

another by the direction of the degree of freedom, alongside the
(supposed) acting load. The global deformation is then equal to
the sum of deformations of the particular elements; while the
stress is distributed to the particular elements evenly,

ϵ = ϵH + ϵN,
σ = σH = σN.

(2.16)

An subsequently, for n members connected in series:

ϵ = ϵ1 + ϵ2 + ... + ϵn,
σ = σ1 = σ2 = ... = σn.

(2.17)

The situation is depicted in Figure 2.10, right. It is evident that
all geometric relations of each model, however complex, will be
determined by the configuration of the model.
Having elementary matters and both types of connections at
hand, we can create various configurations resulting in less or
more complex rheological models, see chain and recurrent mo-
dels in Chapter 3.2, 3.4 or 3.3. Taking abbreviations of ele-
mentary members and signs "|" and "-" standing for serial and
parallel connection respectively, we can write down the struc-
tural form of any rheological model and by using pictograms we
can draw a graphical scheme of it. In Figure 2.10 the model
(H)|(StV) is performed on the left and (H) − (N) on the right-
hand side.
If a rheological model includes only viscous and elastic ele-
ments, it is called viscoelastic. And, since viscoelastic materials
are of great importance within the scope of material science,
there exists a special subbranch of rheology exploring the vis-
coelastic models, called the viscoelasticity theory which deals
with models involving both elastic and viscous matters in vari-
ous configurations and no other rheological member is included.

2.2 Match between the material
and its model

As has been documented before, alongside this book, constitu-
tive relations of materials are a tool for further theoretical test-
ing and predictions of their mechanical behaviour (response,
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reaction) under various types of load. As it was already men-
tioned, viscoleastic models always simulate materials in a cer-
tain level of simplification. This is why the originating model
has to take the future supposed load range of load into account.
For example, when we want to test the operating regime of a
specific type of concrete within its ordinary operating regime
(safely between from it maturing and failure phase), we use a
viscoelastic model. Otherwise, the plastic member has to be
involved in this material rheological model.
The question of whether a model fits the material, can be here-
after answered in a the confrontation of the theoretical investi-
gation results with the laboratory experimental results and the
measurements. So, the feasibility of both the constitutive rela-
tion and the model itself can and has to be validated.
However, a much more essential problem appears very often,
typical for various sciences and research - the inverse task. Of-
ten we have to find a well-fitting model for an explored material
when we are equipped with a set of measured data.
Worldwide research groups have worked on that task for various
types of rheological problems in recent decades, [10, 11, 12, 17,
20, 21, 50]. Moreover, due to both geometric and physical un-
certainty, the problem can become very complex. The problem
has got its name as well, as far as polymers are concerned, Deb-
orah number dilemma - we are supposed to determine which
theoretical models describing the viscoelastic flow of polymers
correspond the best with the experimental findings. By now,
dozens of models have been proposed but they always work
only limitedly and not in general, [40]. However, if an experi-
enced rheologist estimates the configuration, only the problem
of the estimation of physical characteristics remains. Then an
optimization algorithm, heuristic or meta-heuristic, Swarm al-
gorithm, Gravitational search algorithm, Genetic algorithm, Ar-
tificial annealing or others are often used. e.g., [38, 36]. In
Chapter 3.4.1, the Prony series approximation of the general-
ized Maxwell model is provided. The inverse task of obtaining
the Prony coefficients is given by [33].
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2.2 Match between the material
and its model
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Figure 2.10: Viscoelastic model configuration. Parallel and se-
rial connection. Simple (upper-right) and more complex (lower)
rheological models.
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Chapter 3

VISCOELASTICITY

3.1 Viscoelastic modelling

Each viscoelasticity property enfolds both viscosity and elastic-
ity in a synergy. As it is apparent from its name, only the viscous
and elastic fundamental elements are present in any viscoelas-
tic model. Viscoelastic behaviour is exhibited by its damping
ability and hysteresis involved.
Having two fundamental elements (N) and (H) at hand, we can
exploit parallel and/or serial types of connection and to cre-
ate various configurations and various viscoelastic models. The
constitutive relation of the entire model is then determined by
the (elementary) constitutive relations of (H) and (N); and by
the geometry following the configuration. The basic geometric
relations (2.14) and (2.16) for the connection in series and in
parallel are always used.

3.1.1 Linear viscoelastic model

The response of a viscoelastic medium to a load represented by
an appropriate viscoelastic model, can be generally expressed
in the form [45]

F(σ, ϵ, σ̇, ϵ̇, ϵ̈, σ̈, . . . , r, θ, p, t, τ) = 0, (3.1)

with σ and ϵ being the stress and strain tensors respectively,
r - position vector, p - pressure, t - time, τ - action history
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Figure 3.1: Examples of action and reaction functions on ele-
mentary matters (H), (N) and two element viscoelastic models
(M), (K).

time, θ - temperature. Both σ(t) and ϵ(t) are tensor functions
of time and their time derivatives appear in the viscoelastic
model. Since the impact of the mechanical load in viscoelas-
tic materials can persist in time more or less intensively even
after the load ceases or changes, it is important to record the
entire load history (or the load history impact) and take it into
account to specify the current mechanical response. The action
history time τ records all significant changes in the action load
and their impact on the reaction (response) function. Therefore,
each time t0 when we start with the exploration of the mecha-
nical response (action - reaction), we have to take the current
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situation R(t0) into account, i.e. R(t0) stands as the initial stage
of the exploration.
In the one-dimensional case when the physical situation exhibits

 

 

                                                                                                                  

             𝜀                         𝜀(𝑡 − 𝜏1)           

 

                 𝜀(𝑡)   

                            𝜏1                     𝜏2                      𝜏3 

Figure 3.2: Superposition performance of the creep function.
The action: a stepwise stress function (upper graph). The reac-
tion: the particular creep functions added one after the another
(superpositioned) to the resulting global strain function (lower
graph)

negligible influences of the temperature and pressure, (3.1) re-
duces to

F(σ, ϵ, σ̇, ϵ̇, ϵ̈, σ̈, . . . , t, τ) = 0. (3.2)

The highest order time derivative in the constitutive equation
(3.2) corresponds to the number of the so-called "irreducible"
viscous elements included in a viscoelastic model configuration.
Indeed, the "reducible" viscous elements are those elements
that can be formally replaced by one unique element within the
configuration. It means that the mechanical response of the
viscoelastic model does not change when the reducible viscous
elements are reduced to one. Reducible elements are dealt in
Chapter 3.4.1. Therein, in Figure 3.17, there are examples of re-
ducible viscous elements and forms (3.111) are provided, speci-
fying the new arisen global physical parameter η which couples
the particular viscous elements after parallel and serial reduc-
ing, respectively.
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Within the viscoelasticity theory, the reaction R depends on the
action A and its history, too, [45].

R = R
�

A(t, τ))
�

, τ < t. (3.3)

Herein, the functional R is supposed to be linear, which means
that the process of loading is "sufficiently slow" so that no micro-
cracks in the material appear. Besides, as has been already
mentioned, the Boltzmann principle of superposition is valid in
the linear case. If R is time translation invariant in addition, we
can write

R = R
�

A(t − τ))
�

, τ < t. (3.4)

Relation (3.4) refers to a material "with memory".
If the material is time translation variant, (3.3), the current me-
chanical response is influenced by the history of the load, i.e.
type of load and duration. If it is not, the material represented
by the viscoelastic model behaves in the same manner at any
time. The same action load and the same initial value at any
moment of reaction function yield the same resulting reaction.
As soon as the constitutive equation of a model is accomplished,
the various action-reaction processes can be simulated, com-
puted, and graphically interpreted; so the material behaviour
under various types of load can be explored, and examined,
and a prediction of the material’s behaviour can be provided.

3.1.2 Creep and relaxation of the material.
Creep test, relaxation test and time
dependent material characteristics

In general, creep is a typical exhibition of a viscoelastic ma-
terial as a response to a persisting constant tensile or com-
pressive load imposed. It is a continuation of the deformation
process despite the stress load remaining unchanged. Ade-
quately, the relaxation starts immediately after a constant de-
formation is imposed on a viscoelastic material and maintained
in time. The creep compliance C(t) and the relaxation modu-
lus E(t) are so-called time-dependent material characteristics
that can be stipulated by executing creep and relaxation tests.
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Both C(t) and E(t) reflect some information about the age of
the focused materials and facilitate eventual primary compa-
rison and categorization of viscoelastic materials. Creep and
relaxation tests (yielding corresponding constitutive equations,
the special forms of (3.1) or (3.3) or (3.4)) are two typical tests
used for mutual comparison of material in the sense of mecha-
nical response to the load. As soon as the action function is
given, it incomes to the constitutive relation, which becomes
the constitutive equation, a linear differential equation solvable
by standard mathematical methods. In Figure 3.2, the graphical
interpretation can be seen. The stepwise constant stress action
evokes the strain reaction herein. The strain in this case is a
superposition of the particular stresses ϵ(t− t) operating at the
particular intervals 〈t−1, t〉.

Creep test

We impose an immediate stress load σ∗ on the material re-
presented by its viscoelastic model instantaneously and keep it
unchanged by a lapse of time. Despite the constant stress, the
strain continues to increase. Such a response of the viscoelas-
tic material is called the creep of the material. Mathematically -
when substituting the function of stress representing the action
to (3.3) and (3.4), the strain (function in time) is the reaction.

Relaxation test

We impose an immediate strain (action ϵ∗) on the viscoelas-
tic medium represented by the viscoelastic model and maintain
the load unchanged over time. The responding stress magni-
tude decreases as time lapses, and the material is relaxing de-
spite the persisting constant load. Mathematically - as soon as
the strain function is used as the action in (3.3) and (3.4), the
stress function is the reaction.
The creep and relaxation tests carried out for specific viscoelas-
tic models are provided in Chapter 3.2.4.
In the case of a stepwise action function, e.g. immediate load
imposing and ceasing, it is worth employing the Heaviside func-
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tion

h() =

¨

0, if  < 0,
1, if  ≥ 0.

(3.5)

All resulting reactions of the preceding time subinterval action
input to the consequential process as initial values. Keeping
the superposition principle still in mind, we can express the re-
sulting reaction as the sum of all previous particular actions’
contributions [45]:

R(t) = ΔA(τ1)Rh(t − τ1) + ΔA(τ2)Rh(t − τ2) + . . .

· · · + ΔA(τk)Rh(t − τk), (3.6)

where ΔA(τ) = A(t) for t ∈ 〈τ−1, τ) and the shortening Rh(t −
τ) = R[A(t)h(t − τ)] with τ < t is used. When we shorten the
length of each subinterval 〈τ−1, τ〉, even after taking the limit
of its length going to zero, the action becomes a continuous
function and the reaction (3.6) takes the integral form

R(t) =
∫ t

0
Rh(t − τ)

dA(τ)

dτ
dτ. (3.7)

Time-dependent material characteristics

The Hook’s law (2.7), i.e. the linear stress on the strain relation,
can be expressed in the inverse form, the strain on the stress
dependence

ϵ = Cσ (3.8)

with C = 1
E being the so-called compliance modulus, the recip-

rocal value to the elastic modulus. Apparently, C is a constant
when E is constant. Within the viscoelasticity theory, outside of
the linear stress-strain relation we will use a viscoelastic gen-
eralization of both (2.7) and (3.8) in the sense of the claim:
compliance modulus = strain function/stress function, and stiff-
ness modulus = stress function/strain function. If we take e.g.
a creep test, i.e. action imposed is a constant stress σ∗ kept
in time, in which we have derived the resulting strain function
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ϵ(t), then the time-dependent creep compliance modulus of the
material corresponding to this action is

C(t) =
ϵ(t)

σ∗
. (3.9)

In the same manner, the relaxation modulus of the material is
yielded when the relaxation test is carried out,

E(t) =
σ(t)

ϵ∗
, (3.10)

with a constant deformation ϵ∗ maintained during the entire
relaxation test and with the resulting stress reaction σ(t) com-
puted from the constitutive equation.
Herein, C(t) and E(t) are time-dependent functions that stand
as physical (time-dependent) material characteristics. Hence,
the first and basic mutual comparison of materials being devel-
oped can be done.

3.1.3 Derivation techniques of constitutive
relations for two-element viscoelastic
models

Each viscoelastic model involves at least one elastic element
(H) joined with at least one viscous element (N) (at least two
different members in total). A more complex viscoelastic model
is often regarded as a system of submodels connected in par-
allel or in series. As far as the constitutive equations of a com-
plex viscoelastic model are concerned, such a split enables us to
proceed conveniently step by step; first treating each submodel
separately and doing an appropriate completion afterwards.
Viscous and elastic matter are elementary members of each
viscoelastic model. Thus, all particular physical relations have
to be taken into account together with all geometric relations
while deriving the global constitutive relation of such a model.
After doing so, the global stress-strain relation can be derived.
In the following, both two-element models are treated in this
manner.
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Kelvin-Voigt model constitutive equation

In the Kelvin-Voigt model (K) = (H)|(N), one viscous and one
elastic element are connected in parallel. Two parallel rigid
plates are used to align and restrict the movement of entire
model in the direction of the unique degree of freedom. This
is graphically represented by two bold horizontal lines in Fi-
gure 2.9, left, that move in the direction perpendicular to their
longitudinal axes of both of them, i.e. up and down in this fi-
gure, aligned with the direction of the acting load. This ensures
a common displacement of both (or more) coupled members.
To establish the global constitutive relation of the Kelvin-Voigt
model we are first supposed to collect the corresponding ge-
ometric formulas following from the parallel connection (2.14)
and the physical relation of (H) and (N), i.e. (2.7) and (2.11).
Let us recall that by the subindexes H or N, the incidence of the
particular variable with (H) and (N) elements is assessed.

ϵ = ϵH = ϵN, (3.11)

σ = σH + σN, (3.12)

σH = EϵH, (3.13)

σN = ηϵ̇N. (3.14)

We aim to extract the relation between the global stress func-
tion σ(t) and the global strain function ϵ(t) of the entire model,
expressed by physical characteristics E and η only. It means
to couple equations of (3.11) - (3.14) in one in a way that all
indexed variables ϵH, ϵN, σH and σN will be eliminated from this
system. From the equation (3.11) we can see that the indexes
of strain variables ϵ can be simply omitted. Then, in the equa-
tion (3.12), we can substitute for σH and σN from the equation
(3.13) and (3.14). This handling yields the required global phys-
ical (constitutive) equation of the Kelvin-Voigt model:

σ = Eϵ + ηϵ̇ (3.15)

Maxwell model constitutive equation
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The Maxwell model (M) = (H) − (N) is created by the serial con-
nection of one viscous and one elastic element, Figure 2.9, right.
In the system of geometric and physical equations attached to
this model

ϵ = ϵH + ϵN, (3.16)

σ = σH = σN, (3.17)

σH = EϵH, (3.18)

σN = ηϵ̇N, (3.19)

it can be seen that the strain values are summed up and the
stress is distributed evenly between both members. We are
again supposed to eliminate ϵH, ϵN, σH, σN from the system (3.16)
- (3.19) to obtain the relation between the global stress function
and the global strain function expressed using physical charac-
teristics only. Due to the second equation, we can omit the
indexes in the stress variables. From (3.18), we can express
ϵH =

σH
E and from (3.16), we have ϵ̇N =

σN
η . Since we do not have

an explicit form of ϵN, we will differentiate the equation (3.16)
before substituting to it. So we substitute both for ϵ̇H =

σ̇H
E and

ϵ̇N =
ϵN
η . The resulting global physical relation of the Maxwell

model is then

ϵ̇ =
σ̇

E
+
σ

η
(3.20)

Both two-element models, (K) and (M) are regarded as very
basic viscoelastic models, and as already mentioned above, to-
gether with (H) and (N), very often enter to more complex rheo-
logical models as submodels. Accordingly, the Zener model
(Z) = (H1)|[(H2) − (N)] can be written in a shortened form as
(Z) = (H1)|(M), etc. (see the three-dimensional model in Chap-
ter 3.2).
As has been already mentioned above, during the loading and
unloading process of a rheological material, we can observe
a discrepancy in the mechanical response: the same action
value evokes different reaction value during the loading pro-
cess in comparison to the unloading process. This phenomenon
is called the hysteresis [21]. It is usually caused by the dissipa-
tion of energy (see Figure 2.3).
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3.2 Conditional stiffness

In order to further automate the derivation of constitutive rela-
tions, we should try to generalize and facilitate the process of
deriving the global constitutive equation of a model of a certain
configuration.
As we have already detected in the previous text of this book,
due to the presence of the Newton’s viscous element in each
viscoelastic model, the time derivative is always involved in
constitutive relations of these models.
For the sake of future better handling, we employ the (linear)
differential operator D = d

dt in viscous element stress-strain equa-
tion (2.11) first. Then the physical equation of (N) acquires the
form

σN = ηDϵN (3.21)

and couples the physical parameter η with the differential oper-
ator Esc = Esc(D) = ηD getting

σN = EscϵN. (3.22)

The operator Esc : C1(R)→ C0(R) designated in (3.22) is called
the conditional stiffness of the uni-axial viscous matter (N). Herein
C0(R) stands as the space of all continuous functions over real
variables and C1(R) the space of all continuous functions over
real variables whose derivatives are continuous as well.
Having the differential operator within Esc in mind, from now
on we can regard the constitutive relation (3.21) as a general-
ized Hook’s law. For the sake of completion, we naturally put
Eest = E as the conditional stiffness of Hookean matter (H) in
an uni-axial case as well. Having Eest = E and Esc = ηD at
hand, we can write down the constitutive relation (3.15) and
(3.20) of both two-element viscoelastic models (K) and (M) in
the sense of conditional stiffness. The transcription of the con-
stitutive relation of the Kelvin-Voigt model (3.15) is then

σ = (E + ηD)ϵ. (3.23)

Let us moreover designate the operator

Ê = Ê(D) = (E + ηD) (3.24)
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as the global conditional stiffness of the model (K). In such a
case, the constitutive equation of (K) takes the form

σ = Êϵ, (3.25)

that stands as a generalization of the Hook’s law as well.
Similarly, the constitutive relation (3.20) of (M) can be rewritten
in the sense of conditional stiffness as

Dϵ =
�

1

E
D +

1

η

�

σ → ϵ =
�

1

E
+
1

ηD

�

σ =
1

Ê
σ (3.26)

from where we can see the constitutive relation of (M) is again
of the form (3.25). Moreover, from (3.26) we can withdraw the
formula for the global conditional stiffness coefficient of (M)
coupling both the viscous and the elastic conditional stiffness
parameters into one, Ê, given by the form:

1

Ê
=
1

E
+
1

ηD
. (3.27)

Thereafter, (3.27) represents a general rule for the coupling of
arbitrary submodels (two or more) connected in series.
By utilising conditional stiffness conception, the global constitu-
tive equation of any uni-axial viscoelastic model, however com-
plex, can be expressed in the form of a generalized Hook’s law
(3.25).
Let us recall that Ê = Ê(D) includes all geometric and atomic
physical relations of the model:

- In (3.23), we have the global conditional stiffness coeffi-
cient of (K). It is the plain sum of the conditional stiffness
parameters of the particular elements (H) and (N).

- In (3.27), the conditional stiffness of (M) is derived, since
we have the reciprocal value of the global conditional stiff-
ness equal to the sum of the reciprocal conditional stiffness
values of particular members (H) and (N).

Naturally and easily the enhance of the conditional stiffness
computation rules for n members can be done. In the case
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of a parallel connection of n members, the resulting conditional
stiffness is equal to the plain sum of conditional stiffness pa-
rameters of particular members,

Ê =
n
∑

=1

E′ (3.28)

and, in the case of a serial connection, the total conditional stiff-
ness Ê should be expressed from the equation

1

Ê
=

n
∑

=1

1

E′
(3.29)

where E′ is the particular conditional stiffness of th particular
member. At first glance, regarding parallel and serial connec-
tion, it is natural to anticipate an analogy between the handling
of viscoelastic models and the handling of electrical circuits.
Let us emphasize that Ê = Ê(D) stands as a general form of
conditional stiffness and in one dimension Ê is a scalar differen-
tial operator while in more dimensions it is a tensor differential
operator.

Three-element viscoelastic models

Three elements models are widely used in simulating materials
within the scope of the viscoleasticity theory. In Figure 3.3 there
are some examples of three-element models depicted which are
of frequent use in practical rheology of materials: The Poynting
- Thompson model (PTh) which is often used as the model of
concrete under an ordinary load, Zener model (Z), Schofield
(Sch) and (”4”), without a name up to now. All those three
element models are widely used in the biomechanical or tissue
engineering investigation. By using the elimination techniques
elaborated in Chapter 3.1.3 or by using the conditional stiffness
tool together with the rules (3.28) and (3.29) for the parallel and
serial connection respectively, we can accomplish the constitu-
tive relations representing each model.
Next, the structural form (sf), both in the sense of atomic mem-
bers or in the sense of submodels and constitutive relation in
implicit form (cr) are provided:
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(PTh)     (Z)  (S) (“4“) 

Figure 3.3: Three element viscoelastic models: (PTh) -
Poynting-Thompson model, (Z) - Zener model, (S) - Schofield
model and (”4”) [29].

• sf: (PTh) = (H2) − [(H1)|(N)] = (H2) − (K)
cr: E1η1ϵ̇ + E1E2ϵ = η1σ̇ + (E1 + E2)σ

• sf: (Z) = (H1)|[(H2) − (N)] = (H1)|(M)
cr: η1(E1 + E2)ϵ̇ + E1E2ϵ = η1σ̇ + E2σ

• sf: (S) = (N2) − [(H)|(N1)] = (N2) − (K)
cr: η1η2ϵ̈ + E1η2ϵ̇ = E1σ + (η1 + η2)σ̇

• sf: (”4”) = (N1)|[(H) − (N2)] = (N1)|(M)
cr: η1η2ϵ̈ + E1(η1 + η2)ϵ̇ = E1σ + η2σ̇

Recalling the fact that the number of irreducible dash-pots in-
volved in a viscoelastic model determines the order of its con-
stitutive differential equation, the reader can review in Figure
3.3 that the order will be 1 in the cases (PTh) and (Z); and 2 in
(S) and (”4”).

3.2.1 Ordinary differential equations
with constant coefficients

Along this book, the ordinary differential equations with con-
stant real coefficients stand as the constitutive equations of vis-
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coelastic models. Moreover, the roots of the attached charac-
teristic equations are focused since they are directly connected
with practice; they are related to the relaxation and retardation
time values that can be measured in lab. That is why this small
chapter is provided herein, recalling the linear ordinary differen-
tial equations, general solutions, characteristic equations and
their roots.
Keeping in mind the further generalization for nth order, let us
start with the linear ordinary differential equation of the second
order

y′′() + 1()y′() + 0()y() = ƒ (), (3.30)

where 0(), 1() are continuous functions over the interval,
over which the solution is sought. The function ƒ () is called
right hand side.
The solution y() of (3.30) is always of the form

y() = yh() + yp, (3.31)

where yh() is the homogeneous solution, i.e. general solution
of the attached homogeneous equation

y′′() + 1()y′() + 0()y() = 0 (3.32)

and a particular solution yp() of (3.30) which can be found by
the method of variation of the constants. Let us recall that each
linear homogeneous ordinary differential equation has the triv-
ial solution y() = 0.
If we take constants 0, 1 instead of the functions 0(), 1() ∈
R in (3.30), we get the linear differential equation with constant
coefficients

y′′() + 1y′() + 0y() = 0, (3.33)

whose non trivial solution is expected in the form of a linear
combination of exponential functions. Let us take one:
y() = er ⇒ y′() = rer ⇒ y′′() = r2er and supply it in
(3.33). This yields er(r2+ 1r + 0) = 0. and apparently we can
truncate er concluding that in order to solve the differential
equations with constant coefficients (3.33), we are supposed
first to solve the characteristic equation

r2 + 1r + 0 = 0. (3.34)
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One can easily see that this attempt is general for the nth or-
der of the differential equation, where the arisen characteristic
equation is of the nth degree.
Depending on the coefficients, solving (3.34) yields r1, r2 which
are either two different real roots, or a pair of complex conju-
gate, or one double root r of the characteristic equation (3.34).
Depending on this, we have

• y1 = er1, y2 = er2, if r1, r2 ∈ R are distinct,

• y1 = eα cosβ, y2 = eαr sinβ, if r12 = α ± iβ,

• y1 = er, y2 = er, if r1 = r2 = r, r ∈ R.

Then
yh() = c1y1 + c2y2. (3.35)

Next, the general solution y() of (3.30) can be computed by
variation of parameters c1 and c2. Indeed, we replace c1 and
c2. in by 1()y1 + 2()y2, and seek the solution to (3.30) in
the form

y = 1y1 + 2y2, (3.36)

where 1, 2 are designated functions to be determined. Two
unknown functions 1, 2 should satisfy one equation

y′′() + 1y′() + 0y() = ƒ (), (3.37)

thus we can establish one condition more in order to make the
solution of (3.37) more easy. Such condition is

′1y1 + 
′
2y2 = 0

since it shortens the expression of y′. Subsequently we are sup-
posed to solve the linear system of equations

′1y1 + 
′
2y2 = 0

′1y
′
1 + 

′
2y
′
2 = ƒ ().

Finally, the functions 1, 2 can be expressed as:

1 =
∫

W1

W
d,
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2 =
∫

W2

W
d,

where

W =
�

�

�

�

y1 y2
y′1 y′2

�

�

�

�

, W1 =
�

�

�

�

0 y2
ƒ () y′2

�

�

�

�

, W2 =
�

�

�

�

y1 0
y′1 ƒ ()

�

�

�

�

.

More details about the solution of linear ordinary differential
equations can be found e.g. in [14].

3.2.2 Constitutive equations, general
solution, creep compliance modulus
and relaxation modulus calculation

In the previous chapters, we have elaborated the tools for the
constitutive relations computation for an arbitrary uni-axial vis-
coelastic model.
Given the constitutive relation, the constitutive equation arises
by subjecting the model to any specific load, the action func-
tion. In this manner, the known action function arises (stress or
strain, respectively) in the specified period and the constitutive
relation turns to the constitutive equation, a differential equa-
tion with one unknown function. Then the solution to the con-
stitutive equation is the reaction (strain or stress respectively)
within the same time range. Of course, for this ordinary differ-
ential equation of nth-order, n additional conditions are needed
in order to get the unique solution. Usually, we have initial con-
ditions at our disposal.

Example
Let us take the Maxwell model (M) with its constitutive relation
(3.20) and let us

a) subject it to a creep test with cease. Instantly, starting
in the time instant t0 = 0, we burden the constant stress
action σ∗ and maintain it for t ∈ 〈t0, t1〉. Next, at time t1
let cease the load and keep the unloading period lapsing,
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σ(t) = 0 for t > t1.
The creep compliance modulus C(t) derivation, t ∈ 〈t0, t1〉,
starts with substituting σ(t) = σ∗ into the implicit constitu-
tive relation of (M) (3.20). Hereby we obtain the general
solution to this equation simply by its plain integrating:

ϵ̇(t) =
σ∗

η
⇒ ϵ(t) =

σ∗

η
t + c (3.38)

with c being an integration constant. Regarding the initial
deformation ϵ(t0) = ϵ(0) = ϵestc(t0) =

σ∗

E0
, we compute c,

thus the exact solution - creep function of (M) subjected to
the creep test will be of the form

ϵ(t) =
σ∗

η
t +

σ∗

E0
. (3.39)

In this example, in order to emphasise the difference be-
tween the Young modulus of elasticity and the relaxation
modulus derived in b), we use E0 instead of E, ordinarily
used along this book.
We can physically summarise: Initially at the time instant
t0 = 0 when the immediate stress σ∗ starts to act on (M),
an elastic deformation occurs instantaneously. But, exactly
from this moment, a viscous deformation starts to increase
in time without a limitation as long as the action is main-
tained. Finally, the creep compliance modulus of (M) sub-
jected to the creep test is evaluated, see (3.9):

C(t) =
ϵ(t)

σ∗
=
t

η
+
1

E0
. (3.40)

After the stress load (immediately at t1) removal the elastic
deformation recovers (immediately at t1), but a permanent
deformation remains, due to the viscous element present
in the model, connected in series (see Figure 3.1, the third
model).
Mathematically, after the immediate elastic stress drop down
to zero at the instant t1, ϵ(t1+) becomes the initial condi-
tion of the unloading branch, while the governing equa-
tion remains the same as in the loading period, i.e. (3.38),
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which yields the constant leg of strain function from the
instant t1 onwards.

b) subject it to a relaxation test by immediate exposure (M)
to a constant strain ϵ(t) = ϵ∗, t ≥ t0 and compute the re-
laxation modulus E(t):
When substituting ϵ(t) = ϵ∗ into the implicit constitutive
relation of (M), (3.20), we get a linear homogeneous differ-
ential equation

0 =
σ̇

E0
+
σ

η
. (3.41)

The general solution is

σ(t) = ce−
E0
η t, (3.42)

with c being an arbitrary constant.
If there is no pre-stress supposed, we can observe that at
t0 = 0:

ϵ∗ = ϵH(0) =
σ0

E0
.

This happens whenever a single spring is joined in series
with the rest of the model. The initial stress is σ(0) = ϵ∗E0.
Exploiting this initial condition in (3.42) yields the precise
solution, the relaxation function of (M) subjected to a re-
laxation test

σ(t) = ϵ∗E0e
− E
η t. (3.43)

Finally, by using (3.10), the relaxation modulus of (M) sub-
jected to the relaxation test, can be computed:

E(t) =
σ(t)

ϵ∗
= E0e

− E0
η t. (3.44)

It is worth to emphasise herein that both creep and relaxation
moduli (time depending functions) arisen within the creep or
relaxation tests respectively, are of the same type as the parti-
cular responding functions.
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Initial conditions attached to a constitutive equation.
Action and reaction history.

Based on the assumptions mentioned above, the resulting con-
stitutive relation is of the linear differential form.
The linear ordinary differential equations with constant coeffi-
cients are utilized. The following paragraph (example) brings a
short recall of these equations.
Given an action, the constitutive relation becomes the consti-
tutive equation. The order of the differential equation is equal
to the number of irreducible viscous elements involved in the
model, (see the reducible elements in Figure 3.17 and the rules
for reducing in Chapter 3.4). The general solution of a linear
ordinary differential equation with constant coefficient and with
a right-hand side can be computed by using e.g. the variation
of constants method or the undetermined coefficient method in
some special cases. Together with appropriate initial conditions,
the exact solution, i.e. the sought reaction function can be com-
puted, as well. Those initial conditions are of great interest in
viscoelastic models. Namely in mechanical loading, not only the
quantity of the load is decisive, but the duration of its acting as
well. A residual reaction often persists even after ceasing the
action load. That is why we have to take the action-reaction
history carefully into account.
For the sake of better apprehension, let us utilize the considera-
tions from the example above. By exposing the Maxwell model
to a constant tensile force in a time interval, due to an elastic
element connected in series in the model, an immediate defor-
mation ϵH(t0) in the form of a jump occurs, being followed by a
damped viscous irreversible deformation ϵN(t), t > t0 that con-
tinues increasing until the load persists. It is evident that the
magnitude of this (viscous) irreversible deformation depends
on the longitude of the action period 〈t0, t1〉. After the instan-
taneous load removal, the elastic deformation reverses imme-
diately and the viscous deformation persists. This value has to
input as the initial value of the further load process. That is why
the so-called hereditary integrals are employed, as dealt with in
the next chapter. As the action varies a lot within the life span
of the viscoelastic matter, either the action course is traced and
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recorded alongside the time interval one by one, and matched
with the corresponding reaction, or written in the form of here-
ditary integral [31].
Besides, it is worth recalling the characteristic equation roots
have their nice physical interpretation in the stipulation of re-
tardation and the relaxation time spectra that can be gained
directly by measurements in laboratory; hence a mutual con-
frontation is possible in this issue. The retardation and the re-
laxation phenomena are dealt in Chapter 3.2.4.

3.2.3 Hereditary integrals

In the previous text of the book the constitutive relations were
written in a pure differential form, by which the stress-strain re-
lation is usually given implicitly. As far as the action is given,
together with an appropriate number of initial conditions, the
reaction could be computed. But in many considerations, e.g.
in the case of chemists dealing with polymers or polymer-based
composites, there is a need to know the explicit expression of
either stress on strain or strain on stress dependence, even
prior to the action A is given. For this sake, the hereditary
approach was developed, where the explicit relation is stipu-
lated for a general action function. We utilize the functional
R(A) introduced in Chapter 3.1.1. The process of transforming
the implicit constitutive equation to the general explicit form
is demonstrated in the following example, where the functional
J (ϵ) = σ(ϵ) is being derived for the Maxwell model.

Example
The task is to rewrite the implicit (differential) form of the con-
stitutive relation (3.20) of the Maxwell model into the explicit
form, namely as the stress on strain dependence or vice versa.
The procedure is the same in both cases. So let us focus on
the stress on strain dependence. Using the tools and concepts
described in Chapter 3.1.1 we can extend the focused time in-
terval 〈0, t〉 by shifting the left bound down to −∞. In practice,
it means that we know the whole load history of the model as it
was recorded from an initial time instant or we know its global
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impact to the responding function at the initial moment of the
current exploration.
In this example, in order to distinguish between the Young mo-
dulus of elasticity and the relaxation modulus, we use E0 for
denoting the Young modulus instead of E, ordinarily used along
the book.
By using the integrating factor method with the integrating fac-

tor e
E0t
η , the constitutive relation (3.20) is converted into the

integral form. So we then proceed with (3.20) in the form
dotϵE0 = σ̇ + σ E0

η σ and multiply it with this integrating factor,
obtaining after a small rearrangement

d

dt

�

e
E0
η tσ(t)

�

= E0e
E0
η t ϵ̇

and by integrating over the interval 〈−∞, θ〉 we have

�

e
E0
η tσ(t)

�θ

−∞
=
∫ θ

−∞
E0e

E0
η t ϵ̇ dt ⇒

σ(θ) = J
�

ϵ(θ)
�

=
∫ θ

−∞
E0e

E0
η (θ−t)ϵ̇ dt. (3.45)

As we can see, the task is accomplished. In the functional (3.45)
we have an explicit, integro-differential form of the constitutive
equation equivalent to (3.20). To harmonize the notation we just
change the names of variables t→ τ and θ→ t. In this manner,
we get a linear functional for the Maxwell model

σ(t) = J
�

ϵ(t)
�

=
∫ t

−∞
E0e

− E0
η (t−τ)ϵ̇ dτ (3.46)

In the end, (3.46) can be written generally, in the sense of its
relaxation modulus:

σ(t) = J
�

ϵ(t)
�

=
∫ t

−∞
E(t − τ)ϵ̇ dτ (3.47)

Looking back, we see (3.47) yields (3.46) for E(t) = E0e
− E0

η t,
which is exactly the relaxation modulus (3.44) of the Maxwell
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model resulting from the relaxation test realized on (M).
The Heaviside function h(t) is worth employing in the action
history function, as was done in Chapter 3.1.2. Let t0 = 0 be the
starting point of our observation. Let us have the initial stress
measured at t0 and the relaxation modulus E(t) of the model
given. Then

σ(t) =
∫ t

−∞
E(t − τ)h(τ)

dϵ(τ)

dτ
dτ +

∫ t

−∞
E(t − τ)ϵ(τ)

dh(τ)

dτ
dτ.

In the first integral, we can use the fact that h(t) = 0 for τ < 0,
in the second integral we have the Dirac delta function standing
as the time derivative of the Heaviside function

σ(t) =
∫ t

0
E(t − τ)

dϵ(τ)

dτ
dτ +

∫ t

−∞
E(t − τ)ϵ(τ)δ(τ)dτ.

The second integral can be next evaluated by using the proper-
ties (3.54)-(3.56) of the Dirac delta function

σ(t) = E(t)ϵ(0) +
∫ t

0
E(t − τ)

dϵ(τ)

dτ
dτ. (3.48)

If we want to write down the "pure" explicit stress on strain
dependent form, we additionally rearrange the integral in (3.48)
by using integration per partes and put the notation Ẽ(t) = Ė(t)

σ(t) = E(0)ϵ(t) +
∫ t

0
Ẽ(t − τ)ϵ(t)dτ. (3.49)

In such an arrangement the time derivative moves from the
strain action function into the time-dependent physical charac-
teristics.
By the same mathematical tools, we can derive the inverse re-
lation, the strain on stress explicit relation, valid for an arbitrary
uni-axial viscoelastic model

ϵ(t) = C(0)σ(t) +
∫ t

0
C̃(t − τ)σ(t)dτ (3.50)

with the creep compliance function C(t) obtained within the em-
ployed creep test, whereby C̃(t) = Ċ(t).
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Explicit form of constitutive equations. Stress on strain
and strain on stress dependence

From the implicit constitutive relation (3.1) we can explicitly ex-
press either the stress reaction function σ(t) dependent on a
given strain action ϵ(t), or the strain reaction function depen-
dent on a given stress function.
Let us take the strain function as an action first. We already
know that in general the resulting stress function is influenced
not only by the current acting strain but also by the strain his-
tory. This can be formally written as

σ(t) = G∞−∞ [ϵ(t), ϵ(t − τ)] , (3.51)

where, G∞−∞ [] is the so-called constitutive functional. It oper-
ates for τ ∈ 〈0,∞〉 and t ∈ (−∞,∞). It is a tensor valued
functional which transforms the strain history ϵj(t) to the cor-
responding stress history σj(t). Apparently, the parametric de-
pendence on strain is involved, the instantaneous response ϵ(t)
to an instantaneous load σ(t), [7].
Assuming the linearity of the functional G and continuity of the
strain history, we can use the Riesz representation theorem. For
the continuous component functions of the tensor function Ejk
in (0,∞), being also of a bounded variation (its total variation is
bounded) on the arbitrary finite interval 〈, b〉 ⊂ (0,∞), we can
use the Stieltjes form. Written component-wisely, it is:

σj(t) =
∫ ∞

0
ϵk(t − τ)dEjk(τ). (3.52)

Herein, the total variation of a function on an interval 〈, b〉 is
taken:

Vb(ƒ ) = sp
P

nP
∑

j=1

�

�ƒ (j) − ƒ (j−1)
�

�,

where the supreme is evaluated over all possible partitions
P = { = 0, 1, ..., nP = b}, 0 ≤ 1 ≤ ... ≤ nP, of the interval
〈, b〉. The 4th-order tensor E = Ejk, (, j, k,  = 1,2,3) is called
relaxation modulus. Since the deformation tensor is symmet-
ric, Ejk is symmetric too [7, 45]. Moreover, each component of
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Ejk(t) = 0 for −∞ < t < 0.
However, since ϵk(t) = 0 for t < τ, the Heaviside function h(t)
can be used and in that case we can rewrite (3.52) and rear-
range it as follows:

σj(t) =
∫ ∞

0
h(t − τ)ϵk(t − τ)

d(h(τ)Ejk(τ))

dτ
dτ =

∫ ∞

0
h(t − τ)ϵk(t − τ)δ(τ)Ejk(τ)dτ+

+
∫ ∞

0
h(t − τ)ϵk(t − τ)

dEjk(τ)

dτ
dτ. (3.53)

Herein, we have exploited the relation of Heaviside function
(3.5) with the Dirac function

dh(τ)

dτ
= δ(τ), (3.54)

and rearwards
∫ ∞

−∞
δ(τ)dτ = 1, (3.55)

where

δ(τ) =

¨

∞, if τ = 0,
0, if τ 6= 0

is a generalized function called the Dirac function or unit im-
pulse. As a corollary, we have

∫ ∞

−∞
ƒ (τ)δ(τ)dτ = ƒ (0). (3.56)

Recalling furthermore that h(t − τ) = 0 for τ < t and using nota-
tion ƒ (0+) = lim→0+ ƒ () the limit , we get

σj(t) = ϵk(t)Ejk(0+) +
∫ t

0
ϵk(t − τ)

dEjk(τ)

dτ
dτ.
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Next, we can proceed by integrating by parts in the second term
and exploit the substitution τ = t − s afterwards:

∫ t

0
ϵk(t − τ)

dEjk(τ)

dτ
dτ =

=
�

ϵk(t − τ)Ejk(τ)
�t

0+
−
∫ t

0
Ejk(τ)

∂ϵk(t − τ)

∂τ
dτ =

= ϵk(0+)Ejk(τ) − ϵk(t)Ejk(0+) −
∫ t

0
Ejk(τ)

∂ϵk(t − τ)

∂τ
dτ =

= ϵk(0+)Ejk(τ) − ϵk(t)Ejk(0+) +
∫ t

0
Ejk(t − s)

∂ϵk(s)

∂s
ds

(3.57)

Finally we get the the explicit dependence of the stress on
the strain, expressed componentwisely:

σj(t) = ϵk(0+)Ejk(τ) +
∫ t

0
Ejk(t − τ)

∂ϵk(τ)

∂τ
dτ. (3.58)

Relation (3.58) is valid for the tensor function ϵjk(t), smooth in
each component.
By the same consideration as described above, by the same
procedure as for the stress on the strain relation, the inverse
relation, the strain on the stress explicit dependence can
be derived resulting in

ϵj(t) =
∫ t

−∞
Cjk(t − τ)

∂σk(τ)

∂τ
dτ (3.59)

with Cjk(t) being a creep compliance tensor coefficient. Mate-
rial tensor functions Ejk(t) and Cjk(t) represent the mechanical
response of the material represented by its viscoelastic model
to a unit action - strain or stress, respectively.

3.2.4 Retardation and relaxation
time spectra

The retardation and relaxation time spectra are regarded as ad-
ditional material characteristics within the frame of viscoelas-
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ticity.

Retardation time

Neither an elastic element nor any submodel connected to a
dash-pot in parallel cannot carry out its immediate reaction be-
cause it is damped, i.e. retarded by the dash-pot. Within the
creep test the difference between its virtual elastic deformation
(without a dash-pot damper) and the real creep course is called
retardation. Retardation changes over time. In the Kelvin-Voigt
model (and this is so whenever (K) is involved as a submodel),
the retardation expresses how the dash-pot restrains the spring
in its potential elastic reaction. In the Poynting - Thompson
model (PTh) = ((H)|(N)) − (H) the spring connected in series
works freely, while the spring connected in parallel with a dash-
pot, is damped by this dash-pot, so the retardation increases
gradually, (recall Figure 3.4, right).
The period in which the creep would reach the elastic value σ∗

E ,
when proceeding with its initial velocity is next of interest. It is
the so-called retardation time of the material.
Geometrically performed, in the Kelvin-Voigt model we draw a
tangent line to the creep curve at the initial point of the load.
The intersection of this tangent line with the horizontal asymp-
tote ϵest(t) =

σ∗

E (supreme of the creep function), determines
the point where the retardation time is measured. Its t ab-
scissa yields the endpoint of the retardation time. Reader is
encouraged to check the analogous situation with the Poynting
- Thompson model and do a comparison.
All values of the retardation time attached to the specific vis-
coelastic model under the creep test are gathered in a set called
retardation spectrum.
The following example demonstrates how time retardation times
are computed and how those retardation time values are tied up
to the roots of the characteristic equation related to the govern-
ing constitutive equation.

Example: Creep test and retardation time
The authors in [37] claim that the retardation times are equal
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(M)                          (K)                                 (PTh) 

Figure 3.4: Maxwell, Kelvin-Voigt and Poynting - Thompson mo-
dels subject to the creep test with cease. The retardation RTD
is emphasized in red; the retardation time is equal to tRTD − t0.

to the negative reciprocal values to the characteristic equation
roots. Indeed

tRTD =

¨

− 1
λC

ƒ λC 6= 0,
0 ƒ λC = 0

(3.60)

and

tRLX =

¨

− 1
λR

ƒ λR 6= 0,
0 ƒ λR = 0,

(3.61)

where λC and λR are the roots of the characteristic equations
within the creep and relaxation tests respectively.
It is necessary to mention herein, that besides the possible oc-
currence of zero values among the retardation times, there can
occur some singularities arisen in the case of the relaxation.
Whenever a submodel (S0) is connected in parallel with a sin-
gle viscous element: (P) = (S0)|(N), due to damping of (N), it
is not possible to impose a non-zero instantaneous strain on
such a model; theoretically infinite magnitude of force would
be needed in order to impose any immediate non-zero strain.
The tangent line slope is infinite and we say that the relaxation
time does not exist. For (S0) = (H) in (P) we have (K), i.e. the
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simplest (P). Its singularity accompanying the relaxation test,
is performed in Figure 3.5. Apparently, since the (K) cannot un-
dergo the relaxation test at all, there is no element in RTD(K).
Mathematically speaking - though the constitutive equation of
(K), is a differential equation of the first order, only the time
derivative of ϵ, and no derivative of σ appears there therein.
Accordingly, if we supply the constant ϵ∗ for ϵ(t), we get the
plain (not a differential) equation σ = Eϵ∗. We conclude that im-
posed to the (theoretical) relaxation test, no value of relaxation
time is yielded. However, we put one "-" (empty place) inside
the relaxation spectrum set for the sake of the emphasizing the
fact that the constitutive equation of the model is a differen-
tial equation of the first order. And, let us summarizing finally.
Whenever (K) or (P) is involved in a more complex viscoelastic
model under relaxation test, one or more "-" appear in the re-
laxation spectrum set.
The following considerations are aimed to show how it works for
a simple viscoelastic model. Subjecting the Kelvin-Voigt model
(K), governed by its constitutive relation (3.15) to a creep test
with a constant permanent stress load σ∗ we definitely obtain
the constitutive equation

σ∗

η
= ϵ̇ +

E

η
ϵ (3.62)

which is a linear differential ordinary differential equation with
the constant coefficients. During the process of solving (3.62)
we go through corresponding characteristic equation which is
now of the form

λC +
E

η
= 0. (3.63)

The unique root of (3.63) is λC = − E
η [s

−1]. Its physical meaning

is that − 1
λC

is exactly equal to the retardation time of (K) under
the creep test. Well, let us proceed with the aim of proving this
relation. Supposing the zero initial deformation we have the
solution of (3.62) is of the form

ϵ(t) =
σ∗

E

�

1 − e−
E
η t
�

. (3.64)
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It is the creep function of Kelvin-Voigt model under the creep
test. In line with the geometric interpretation of retardation,
we would like to find the tangent line to this creep function at
the initial point. So we differentiate (3.64) with respect to time,

getting the creep rate function ϵ̇(t) = σ∗

η e
− E
η t of (K); and by

evaluating its value at time instant t0 = 0 we get the initial
creep velocity

ϵ̇(0) =
σ∗

η
. (3.65)

Finally, by using the kinematic equation for the straight line uni-
form motion time = path/speed we derive the retardation time

tRTD =
η

E
= −

1

λC
. (3.66)

Let us additionally make a geometric confrontation with the aid
of the Figure 3.4. We have led the tangent line to the creep
function at the point t0 = 0. Its slope is the derivative of the
function ϵ(t) in this point, (3.65). The intersection of the tan-
gent line with the constant function, the horizontal asymptote
of the creep function is a point with coordinates tRTD and σ∗

E .
The retardation spectrum RTD(mode) is a set containing all re-
tardation time values. The number of members (non-zero and
zero) in the time retardation spectrum set is equal to the num-
ber of irreducible pistons involved in parallel, in the viscoelas-
tic model. As it was performed above, all non-zero retardation
time values are yielded directly form the characteristic equation
arisen from the constitutional equation by applying the creep
test. They are the negative reciprocal values of the non-zero
roots of this characteristic equation. On the other hand, the
zero retardation time arises from the serial connection of (N)
herein when no retardation appears. It is so in the case of the
Maxwell model, see Figure 3.4, left.
We can handle the Poynting-Thompson model (Figure 3.3) sim-
ilarly as the Kelvin-Voigt model, yielding one retardation time
value

¦

η
E2

©

.
RTD(M) = {0} ,

RTD(K) =
§η

E

ª

,
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(M)                              (K)                                (PTh) 

 

 

 

 

Figure 3.5: Relaxation test carried out on the Maxwell, the
Kelvin-Voigt (just theoretically - singularity occurs there) and the
Poynting - Thompson models, relaxation RLX is emphasised in
red, relaxation time=tRLX − t0.

RTD(PTh) =
�

η

E2

�

,

RTD(S) =
�

η1

E1
,0
�

.

Example: Relaxation test and relaxation time
During a relaxation test, we get the relaxation time spectrum
in the time scale. We trace the decrease of the stress function
as the response to the instantly imposed constant permanent
deformation ϵ∗.
Let us take (M) and subject it to the relaxation test. Initially, due
to an immediate deformation, the stress immediately increases
to its maximum, and at the same time, it starts its slower and
slower decrease down towards zero or another reference value
reflecting the type of the model.
The relaxation time is measured on (M) from the time moment
when the load begins to act, up to the instant, when the virtual
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stress drop (downwards linearly in the direction of the initial
stress velocity vector) reaches zero or corresponding reference
value reflecting the configuration of the model, compare (M)
and (PTh) models in Figure 3.5. Check also the geometrical in-
terpretation of the situation with relaxation and relaxation time
tRLX. The endpoint of the relaxation time interval is measured
in the intersection of that tangent line to the relaxation curve in
the load/response initiation time, with the abscissa if we refer
to (M), or with a reference horizontal line, if we consider a more
complex, e.g. Poynting-Thompson model.
Analogously to the previous example, by substituting ϵ∗ for ϵ(t)
in (3.20) yielding the characteristic equation

0 =
λ

E
+
1

η
, (3.67)

we get the unique relaxation time; and the relaxation time spec-
trum

¦

η
E

©

- the one element set for the Maxwell model. The

same procedure yields
¦

η
E2

©

- the relaxation time spectrum for
the Poynting - Thompson model involving one dash-pot only.
For each non-zero λR, the root of characteristic equation of any
model, the relationship between the relaxation time tR and the
corresponding characteristic equation root λR is

tRLX = −
1

λR
(3.68)

The number of elements in the time relaxation spectrum is equal
to the number of irreducible pistons involved in series in the vis-
coelastic model.
In reality, it is impossible to impose an immediate non-zero
strain (step-wisely) on the Kelvin Voight model. The force of in-
finitesimal magnitude would be necessary. We say that (K) does
not relax and we put a dash in relaxation time spectrum pointing
out to the present singularity herein We can briefly summarise:

RLX(M) =
§η

E

ª

,

RLX(K) = {−} ,
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RLX(PTh) =
�

η

E2

�

,

RLX(S) = {−,−} ,

etc. By the same procedure we can calculate spektra of retarda-
tion and relaxation times for any viscoelastic model. For more
information see [53].

3.2.5 Viscoelastic modelling application
Human plantar aponeurosis (fascia)

The human body consists of typical rheological components ex-
clusively. The reason is the presence of water in each cell of
the body. Various fibrous connective tissues, i.e. tendons and
ligaments are typical viscoelastic materials. Even body liquids
(blood, lymph) perform more or less rheological behaviour. We
will next focus on the flat tendon, which is located at the very
bottom of the human foot, under the plantar arch, and which
plays an important role in walking, running, etc. It is called
the plantar aponeurosis or fascia [41, 48]. In Figure 3.6, the
anatomy of aponeurosis, its mechanical functioning and a sim-
plified viscoelastic model are illustrated. Admitting the appro-
priate level of simplification, and regarding the expected (phys-
iological and non destructive) range of load, for a short time
period of load, we have chosen the Burgers model
(poneross) = (H) − (K) − (N) = (H) − [(H)|(N)] − (N).
By using the tools of Chapter 3.2 first we are supposed to derive
the global constitutive relation of the model performing, sim-
ulating the fascia. When handling a more complex viscoelas-
tic model, in order to determine the constitutive relation, it is
more convenient to deal with the model regarded as the paral-
lel or serial connection of several simpler submodels, (see the
model split of aponeurosis together with physical parameters in
Figure 3.6, right). The model is regarded as a serial connection
of three components: Elastic body - block 1, Kelvin-Voigt sub-
model - block 2, Newton body - block 3. Indeed, we will use
the formula (H1) − [(H2)(N2)] − (N3), where indices set out the
incidence with the involving blocks.
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block 1 

block 2 

block 3 

Figure 3.6: Plantar human aponeurosis (fascia); Anatomy (left),
mechanical models (middle), simplified viscoelastic model
(right) [55, 29].

Due to the serial connection of three blocks, we can write down
the global conditional stiffness coefficient directly, see (3.27):

1

Ê
=

1

Eest
+
1

EK
+

1

Esc
, (3.69)

where the particular conditional stiffness values come from the
particular blocks:

• block 1. σ1 = E1ϵ1 ⇒ Eest = E1

• block 2. σ2 = (E2 + η2D)ϵ⇒ EK = E2 + η2D

• block 3. σ3 = η3Dϵ⇒ Esc = η3D

The fact that while the conditional stiffness coefficient Eest
stands as a purely physical parameter, EK and Esc are differ-
ential operators since they couple the physical properties of the
elementary members with the time derivative operator. By sub-
stituting these conditional stiffness coefficients into (3.69), we
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obtain the resulting conditional stiffness of the aponeurosis in
the form

Ê =
E1E2η3D + E1η2η3D2

E2η3D + η2η3D2 + E1η3D + E1E2 + E1η2D
. (3.70)

Thereafter, in the sense of (3.25), the stress-strain relation, the
mechanical behaviour governing equation of human foot fascia
written in implicit form is

η2η3σ̈ + (E2η3 + E1η3 + E1η2)σ̇ + E1E2σ =

= E1η2η3ϵ̈ + E1E2η3ϵ̇. (3.71)

From now on, having the constitutive relation (3.71), we are
capable of investigating the mechanical response of the mat-
ter standing beyond the model theoretically, subjected to any
action load. Let us execute both standard tests described in
Chapter 3.1.2.

Creep test with cease carried out on aponeurosis
viscoelastic model

The constant tension stress σ∗ = FG/Apnt [P] corresponding
to the half weight of the body in an unmoving standing posture
is imposed on the initially motionless plantar fascia at the time
instant t0 = 0. The size of the plantar aponeurosis area of both
feet herein is denoted as Apnt [cm2].
We assume that the healthy plantar tissue for this σ∗ is kept
within a suitably safe range of load in which no injury incident
occurs. Consequently, if we use the constant value σ∗ as σ(t)
in (3.71), we get a linear ordinary differential equation with con-
stant coefficients and with non-zero right hand side

E1η2η3ϵ̈ + E1E2η3ϵ̇ = E1E2.σ∗ (3.72)

Equation (3.72) governs the process of deformation of aponeu-
rosis represented by its viscoelastic model over time during the
creep test. It is a linear 2nd-order ordinary differential equa-
tion with constant coefficients, and two additional conditions
are required to make the problem uniquely solvable. The two
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required conditions can be the initial strain value and the initial
strain rate value. All these initial conditions can be specified
block by block. Having the aponeurosis viscoelastic model split
into three particular blocks, connected in series as outlined in
Figure 3.6: block 1 = (H1), block 2 = (K) = (H2)|(N2), block 3 =
(N3). Then the geometric equations of the connection in series,
in accordance with (2.17),

ϵ(t) = ϵ1(t) + ϵ2(t) + ϵ3(t). (3.73)

Due to the solitaire Hookean member connected in series, per-
formed as block 1 in Figure 3.6 right, the immediate initial strain
reaction to the immediate stress action at time instant t0 = 0 is
just upon it and it appears immediately:

ϵ(0) = ϵ1(0)
σ∗

E1
. (3.74)

It is worth recalling that as far as a stepwise constant action
function is concerned, block 1 is responsible for all immediate
reaction changes, and jumps, and only for them. But it does
not contribute to the movement between those jump points.
On the other hand, blocks 2 and 3, remain unmoved in the
moment of a jump due to the involved damping member and
no strain occurs on them. But they start to move at the same
moment and evolve the responding movement function at the
very next moment. Mathematically, it means that both these
blocks are decisive when deriving the initial deformation rate ϵ̇.
As was already mentioned, the total deformation of aponeuro-
sis represented by this model is summed up from the deforma-
tions of all (three) particular blocks at any time instant t ≥ t0.
Block 1 does not contribute to the movement between those
jump points time instants. Obviously, the total deformation rate
comes directly from (3.73), by its differentiating it with respect
to the time variable:

ϵ̇(t) = ϵ̇1(t) + ϵ̇2(t) + ϵ̇3(t). (3.75)

Let us have a look at the strain functions of the particular blocks
of aponeurosis viscoelastic model. Indeed we want to specify
the individual addends in (3.75). Under the constant persisting
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load σ∗ imposed on the tissue represented by the viscoelastic
model, the constitutive relations of three blocks are of the form

σ1 = E1ϵ1(t),
σ2 = E2ϵ2(t) + η2ϵ̇2(t),
σ3 = η3ϵ̇3(t).

(3.76)

Since the geometric equations of the connection in series of

Figure 3.7: Strain functions of individual members of the human
plantar aponeurosis viscoelastic model subjected to a constant
load; summing them up yields the resulting creep function.

blocks 1, 2 and 3 following from (2.17) ensure an equality of
particular stress functions of three particular members

σ∗ = σ1(t) = σ2(t) = σ3(t), (3.77)

the physical equations of three blocks build up a system of three
equations with three unknown strain functions

σ∗ = E1ϵ1(t),
σ∗ = E2ϵ2(t) + η2ϵ̇(t),
σ∗ = η3ϵ̇3(t).

(3.78)

The second and the third equations of (3.78) are first-order li-
near differential equations. Accordingly, for the sake of ensur-
ing the uniqueness of the solution, for each of both equations,
one additional condition is needed. Indeed, we have the parti-
cular initial conditions ϵ2(0) = 0 and ϵ3(0) = 0 justified above.
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The time-dependent strain function ϵ2(t) of block 2 is given as
a solution to the second equation in (3.78), the first-order li-
near differential equation. Together with the attached zero ini-
tial condition ϵ2(0) = 0 we get the unique solution

ϵ2(t) =
σ∗

E2

�

1 − e−
E2
η2
t
�

, (3.79)

see the method of variation of parameters in Chapter 3.2.1.
When we differentiate (3.79) with respect to time, we get the

strain rate of block 2: ϵ̇2(t) =
σ∗

η2
e−

E2
η2
t. It is worth recalling that

behind the zero strain rate of block 1, the strain rate function of
block 2 changes in time while the strain rate function of the third
block is constant. The last one: ϵ̇3(t) =

σ3
η3
= σ∗

η3
which follows

directly from the third equation of the system (3.78). Finally, we
just figure up the sum (3.75)

ϵ̇(t) = 0 +
σ∗

η2
e−

E2
η2
t +

σ∗

η3
, (3.80)

yielding the global strain rate function. Its initial required value
at t0 = 0 is

ϵ̇(0) = σ∗
�

1

η2
+
1

η3

�

. (3.81)

In a physiologic case, (H1) is able to bear and store all receiving
initial energy imposed on the plantar fascia tissue and E1 is not
overloaded. The (poneross) potential energy immediately
stored by (H1) is initially ready to be used for a prospective
reverting process. But, with the lapse of time, since the load
persists, the energy is continually dissipated, resulting in the
loss of both the potential energy and the recovery capability. It
means a certain permanent deformation appears and persists
even a long time after the load cease. Nevertheless, there are
physiological processes inside the living human body that usu-
ally neutralize this permanent strain impact - partially or totally.
A more detailed exploration concerning energy storage and dis-
sipation is provided in the next chapter.
We shortly conclude that the model (poneross) fits satisfac-
tory to the human plantar aponeurosis for a short period of time
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and without any overburdening during the mechanical loading.
These two limitations exist because the parental organism is
still alive, and many physiological processes run in synergy.
Accordingly, many other factors influence the process of apo-
neurosis mechanical behaviour. Now it is worth emphasizing
that, as far as mathematical treatment is concerned, the use of
equation (3.71) as the stress-strain relation of the human plan-
tar fascia is justified.
At last, the Cauchy initial value problem (3.72), (3.74), (3.81)
can be solved by using standard methods of ordinary differential
equations, yielding the unique solution, the function operating
within the loading period 〈t0, t1〉, let us denote it as ϵL(t):

ϵL(t) = σ∗
�

1

E1
+
1

E2
−
1

E2
e−

E2
η2
t +

t

η3

�

. (3.82)

The creep function governs the movement. It is valid while the
load remains unchanged.
Naturally, we next extend the creep test by a stepwise cease
of load simulating walking, running or jumping. The stepwise
action function is assumed, e.g. σ∗ 6= 0 in 〈t0, t1〉 and σ∗ = 0
for t > t1. In such a case, the resulting decrease in the creep
function is of interest.
After the immediate (stepped) cease of the load at time in-
stant t1, the creep function changes instantaneously. The non-
smoothness in the still continuous creep function appears at the
time instant t1. Its new leg ϵU(t) (index U stands for "unload-
ing") can be computed from the new initial problem consisting
of the same governing differential equation (3.78), with a new

initial condition, the current values of ϵ2(t1) =
σ∗

E2
(1−e−

E2
η2
t1) and

ϵ3(t1) =
σ∗

η3
t1, where ϵ3 follows from the third equation of (3.78)

and the zero initial condition at t0 = 0.

ϵ2(t) =
σ∗

E2

�

e
E2
η2
(t1−t) − e−

E2
η2
t�, t ≥ t1,

ϵ3(t) =
σ∗

η3
t1, t ≥ t1.

(3.83)

Having the strain values in the cease instant t1: ϵ2(t1) and
ϵ3(t1), operating as the initial conditions in the second and the
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Figure 3.8: Human plantar aponeurosis under the creep test
with cease. Viscoelastic deformation as a response to a con-
stant stress maintained within the time interval 〈0, t1〉, ceased
immediately at time instant t1.

third equations of (3.78) over the time period t ≥ t1 and re-
calling ϵ1(t1) =

σ∗

E1
, following straightly from the first equation

of (3.78), we can complete the "unload leg" of the total strain
function as the sum (3.73):

ϵU(t) =
σ∗

E2

�

e
E2
η2
(t1−t) − e−

E2
η2
t�+

σ∗

η3
t1, t ≥ t1. (3.84)

In Figure 3.8 we see that after the peak point ϵL(t1) where the
nonsmoothness of ϵ(t) appears, the solution continues with its
second decreasing leg. Finally, we can summarize that for the
stepwise stress function

σ(t) =

¨

σ∗ 0 ≤ t ≤ t1,
0 t > t1.

as the action, the reaction as a nonsmooth, but still continuous
creep function

ϵ(t) =

¨

ϵL 0 ≤ t ≤ t1,
ϵU t > t1.

(3.85)

The graphical performance of the creep function (3.85) can be
seen in Figure 3.8. Its hysteretic behaviour is illustrated in Fi-
gure 3.9.
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Figure 3.9: Hysteretic behaviour of the human plantar aponeu-
rosis tissue (right) under the stepwise load simulating walking
(left) [32].

Relaxation test carried out on viscoelastic model
of human plantar aponeurosis

The constant deformation load ϵ(t) = ϵ∗ is imposed at time
instant t0, and kept in time, to the aponeurosis represented
by Burger’s viscoelastic model. Likewise as in the case of the
creep test, we carry out our analysis with both previous assump-
tions: a "short" period taken into account and just a physio-
logical range of load is supposed, under which no destructive
change of the tissue can occur. Then the following considera-
tions can be pursued.
The procedure for deriving the relaxation function σ(t) is of a
similar spirit as in the case of the creep test. Here again we
need to use the split of the aponeurosis viscoelastic model to
those three particular blocks, connected in series. Though the
deformation of the entire model ϵ∗ remains the same alongside
the test, the particular deformations of particular blocks change
over time. It follows from (3.73) that the total deformation, kept
unchanged within the duration of the whole theoretical experi-
ment ϵ(t) = ϵ∗, is composed from three addends that change in
time

ϵ∗ = ϵ1(t) + ϵ2(t) + ϵ3(t). (3.86)

In order to calculate the responding global stress (relaxation
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function), we will need to evaluate each of these three addends
one by one. We can do this as follows.
The governing differential equation arises from the constitutive
relation (3.71) with ϵ(t) = ϵ∗. This bears

η2η3σ̈ + (E2η3 + E1η3 + E1η2)σ̇ + E1E2σ = 0, (3.87)

a homogeneous differential equation with constant coefficients
that governs the relaxation process of the aponeurosis under a
constant deformation. The equation is easily solvable with ap-
propriate initial conditions. But we do not have them directly.
So, let us first think a bit physically about the initial situation,
i.e. the situation with the model at time instant t0. Blocks 2
and 3 are disabled to bear the immediate strain. In the case of
block 2, the viscous member connected in parallel causes the
damping effect, and block 3 is a viscous member that always
damps itself. That is why all the action deformation imposed on
the model is immediately carried by block 1, the elastic compo-
nent connected in series to the rest of the damped model can
do that; hence ϵ∗ = ϵ1(0). Indeed, we can conclude from the
previous consideration (having the physical equation of (H) in
mind) that σ(0) = σ1(0) = ϵ∗E1.
For deriving the relaxation function rate, we have to take (3.86)
for n = 3 and the equality of all the component (blocks) stress
values connected in series σ(t) = σ1(t) = σ2(t) = σ3(t), see
(2.17), into account, together with appropriate physical equa-
tions of the three blocks of the model

�

σ1(t) =
�

σ(t) = E1ϵ1(t), (3.88)
�

σ2(t) =
�

σ(t) = E2ϵ2(t) + η2ϵ̇2(t), (3.89)
�

σ3(t) =
�

σ(t) = η3ϵ̇3(t). (3.90)

System [(3.86), (3.88) - (3.90)] couples one linear equation and
two linear differential equations. Together with the initial condi-
tions

ϵ1(0) = ϵ∗

ϵ2(0) = 0
ϵ3(0) = 0

(3.91)

that were focused on and reasoned above, the system can be
solved by using standard mathematical tools. All coefficients
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in all equations of the system are constant; hence the ana-
lytical solution is reasonable. However, the resulting deforma-
tion functions ϵ1, ϵ2, ϵ3 and the relaxation function are too com-
plicated when written down generally. Thus, only the graphi-
cal interpretation of the particular strain functions is provided,
namely:

* Figure 3.10 performs the deformation of the spring - elas-
tic member (H1) linked in series to the rest of the model
during the constant total deformation, the action load ϵ∗

of relaxation test.

* Figure 3.11 performs the damped deformation of Kelvin-
Voigt submodel of aponeurosis viscoelastic model under
the constant total deformation ϵ∗.

* Figure 3.12 performs the deformation of the dash-pot con-
nected in series to the rest of the aponeurosis model dur-
ing maintained constant deformation ϵ∗ load. It can be
seen that deformation continues increasing linearly until
the load persists.
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Figure 3.10: Responding strain function ϵ1(t), specific deforma-
tion of block 1, the Hookean member (H1) of the viscoelastic
model aponeurosis under the relaxation test; larger scale (left),
smaller scale (right).

The total strain decomposition (3.86) is graphically interpreted
in Figure 3.13.
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Figure 3.11: Responding partial strain function of block 2, the
Kelvin-Voigt submodel (H2|N2) of the aponeurosis viscoelastic
model under the relaxation test, i.e. ϵ2(t) in larger scale (left),
smaller scale (right).

3.3 Energy storage and dissipation

This chapter deals with the energy of a viscoelastic body. As
has been mentioned above, in the case of the the loading and
unloading process of a viscoelastic material, the energy dissipa-
tion phenomenon occurs due to the presence of one or more vis-
cous elements that do not store any energy. This released heat-
dissipated energy usually turns into heat. When the amount of
heat is "too big", the ambient temperature can increase signif-
icantly, so far as the physical parameters are affected. In such
a case, linearity is not kept any more, as well as the Boltzmann
superposition principle is no longer valid; and the non-linear ap-
proach has to be employed. From the theory of thermodynam-
ics, we know that the change of the inner energy of a viscoelas-
tic material is induced either by a work-performance or by the
exchange of heat. The first law of thermodynamics, the bal-
ance equation in a closed system is mostly referred to when
the thermodynamic consistency requirement of the rheological
model is mentioned. However, we start with linear modelling
and concurrently check the amount of released heat, quantify
the temperature increase and verify the change in the physical
parameters.
Accordingly, from now on, within the scope of the isothermal
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Figure 3.12: Responding strain function ϵ3, the specific defor-
mation of block3, the Newton member (N3) of the viscoelastic
model of human plantar aponeurosis under the relaxation test;
larger scale (left), smaller scale (right).

 

Figure 3.13: Illustration of the constant total deformation func-
tion ϵ∗ split to the sum of the strain functions of particular
blocks during the relaxation test.

viscoelastic investigation, we can suppose that the mechani-
cal energy received by the viscoelastic model is either stored
or dissipated, U = Up + Ud. Subject to a load, the one degree
of freedom viscoelastic models’ behaviour is observed, together
with the observation of the energy – total, stored and dissipated.
Nevertheless, the only stored energy in the viscoelastic model
is the potential energy. The ratio of the dissipated to the total
energy can further stand as a measure of the reversibility of the
model.
It is worth saying here that if the dash-pot is connected in series
at the end of a model, as it is e.g. in the case of the Maxwell
or the Schofield models, check in Figures (2.9) and (3.3), the
model is irreversible. Each rheological element, as well as a
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viscoelastic model, governed by its corresponding constitutive
relation with the potential energy Up ≥ 0, has to be thermody-
namically consistent. Hence, the energy dissipation rate of the
model has to be non-negative, [20]. Now, let us trace the total
deformation energy flow during a load process and then explore
its partition into the potential energy and the dissipated energy
components, having the constitutive equation of the viscoelas-
tic model, which expresses the dependence of the reaction on
the action, still in mind. First, we will focus on the total work of
deformation quantification. The stress power of the viscoelastic
model, i.e. the rate of the deformation work quantified per time
unit and volume unit, is, [47]

U̇ = σ(t)ϵ̇(t). (3.92)

Consequently, by integration of (3.92), the deformation work
itself can be expressed and quantified per time interval 〈0, t〉;
at the same time the initial value U(0) of the energy is taken
into account as well:

U(t) = U(0) +
∫ t

0
U̇()d = U(0) +

∫ t

0
σ()ϵ̇()d. (3.93)

The initial instantaneous energy U(0) is always non-negative -
mostly impulsively increased or decreased within one moment
or zeroed in some cases. Further explanation about this is given
below in this chapter. Each of the expressions (3.92) and (3.93)
involves both stress and strain functions. However, we should
bear in mind that typically, in the continuum mechanics tasks,
there is an action imposed on a body, and the reaction induced
is focused, and, usually, either the stress is an action and the
strain is the reaction or vice versa. Hence, for a more conve-
nient subsequent utilization, it is worth expressing (3.92) and
(3.93) explicitly either in the sense of stress exclusively or in
the sense of strain exclusively. For this purpose, we can employ
the time-dependent material characteristics: the relaxation mo-
dulus Ẽ(t) and the compliance modulus C̃(t), which are specific
for particular load type and a particular viscoelastic model, see
Chapter 3.1.2. This way, we can switch between the stress and
the strain - according to the actual need. After all, the defor-
mation energy rate (3.92) written either in the sense of strain
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exclusively or in the sense of the stress exclusively acquires the
form

U̇(t) = Ẽ(t)ϵ(t)ϵ̇(t) (3.94)

or

U̇(t) = σ(t)
d

dt

�

C̃(t)σ(t)
�

(3.95)

and consequently, the total deformation energy (3.93) formu-
lated either in the sense of strain exclusively is

U(t) = U(0) +
∫ t

0
Ẽ()ϵ()ϵ̇()d (3.96)

or in the sense of stress exclusively

U(t) = U(0) +
∫ t

0
σ()

d

d

�

C̃()σ()
�

d. (3.97)

Remark
General rules for the derivation of the time-dependent mate-
rial characteristics Ẽ(t) and C̃(t) are explored in [25], and the
synopsis is provided in [24]. Each of these functions of time
links the configuration of the viscoelastic model with all physi-
cal equations of all included members. It is always the ratio of
action and reaction that varies in time. Specific cases of time-
dependent material characteristics Ẽ(t) = σ(t)

ϵ(t) and C̃(t) = ϵ(t)
σ(t)

derivation for the Maxwell model, subjected to creep and re-
laxation tests, are dealt with in Chapter (3.1.2).

Roughly speaking, due to the presence of elastic elements in
viscoelastic models, a part of the deformation energy can be
stored by the elastic members, while the rest of this energy is
dissipated thanks to the viscous elements present therein. The
stored energy is later, e.g. after the load ceases, utilized for
a partial or total deformation reversal of the viscoelastic body.
The dissipated energy is usually converted into the heat and
spread irrecoverably into the ambient. The energy dissipation
rate through the dashpot (N)

U̇d = σN(t)ϵ̇N(t) (3.98)
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in the sense of strain and the sense of stress, respectively, ac-
quires the form:

U̇d = ηϵ̇2N(t), (3.99)

U̇d =
1

η
σ2N(t). (3.100)

By integrating (3.98), Ud(t) = Ud(0)+
∫ t
0 U̇d()d, i.e. the amount

of the energy dissipated within the period 〈0, t〉 of the mechani-
cal loading process can be quantified per volume unit either in
the sense of strain or in the sense of stress, respectively:

Ud(t) = Ud(0) +
∫ t

0
ηϵ̇2NE()d, (3.101)

Ud(t) = Ud(0) +
∫ t

0

1

η
σ2N()d. (3.102)

Definitely, with respect to (3.98), the physical relation of New-
ton’s viscous matter (2.11) stands as the switch tool between
(3.99) and (3.100), and between (3.101) and (3.102).
Next, we can proceed similarly with exploring the potential en-
ergy. Let us start with the potential (stored by (H)) energy rate
U̇p = σH(t)ϵ̇H(t) formulated either in the sense of the strain:

U̇p = Eϵ(t)ϵ̇H(t) (3.103)

or in the sense of the stress:

U̇p =
1

E
σH(t)σ̇H(t). (3.104)

Evidently, the potential energy itself is

Up(t) = Up(0) +
∫ t

0
U̇p()d.

Written in the sense of strain and stress, respectively, it is

Up(t) = Up(0) +
∫ t

0
EϵH()ϵ̇H()d, (3.105)
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Up(t) = Up(0) +
∫ t

0

1

E
σH()σ̇H()d. (3.106)

Since a dash-pot prevents an immediate deformation, an action-
reaction non-zero immediate initial deformation appears only in
the case when there is an elastic element (H) connected in se-
ries to the rest of the model within the configuration of a vis-
coelastic model. In such a case, the initial dissipation energy
is zero, while (H) stores all possible initial immediate potential
energy

Up(0) =
1

2
Eϵ2H(0) =

1

2E
σ2H(0). (3.107)

Consequently, the stored energy can be determined

Up(t) =
1

2
Eϵ2H(0) +

∫ t

0
EϵH()ϵ̇H()d =

=
1

2E
σ2H(0) +

∫ t

0

1

E
σH()σ̇H()d. (3.108)

Both integrals in (3.105) and (3.106) can be also regarded (and
evaluated) as Stieltjes integrals:

∫ t

0
EϵH()ϵ̇H()d = E

∫ ϵ(t)

ϵ(0)
ϵH()dϵ() =

1

2
E
�

ϵ2H(t) − ϵ
2
H(0)

�

,

(3.109)
∫ t

0

1

E
σH()σ̇H()d =

1

E

∫ σH(t)

σH(0)
σH()dσH() =

1

2E

�

σ2H(t) − σ
2
H(0)

�

.

(3.110)
Having the Sieltjes integral at hand, we can derive the forms
specifying the potential and the dissipated energy of viscoelas-
tic models of various configurations.
If the magnitude of energy imposed on the medium represen-
ted by the viscoelastic model exceeds the storing capability of
a spring connected to the rest of the viscoelastic model, the
remaining energy is initially step-wisely dissipated and imme-
diately after that initial jump, the amount of dissipated energy
starts to decrease.
If there are more elastic or more viscous elements involved
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in the viscoelastic model, then the corresponding energies are
summed up adequately, with respect to the configuration of the
model.
In Figure 3.14 some examples of energy performance are pro-
vided for the Maxwell model which is subject to several types
of stress load - the action functions A(t) that bring the strain
response - the reaction R(t). The deformation energy is per-
formed in the second column of the table as partitioned into the
potential and the dissipated one. For the sake of synopsis, a
constant, a linear non-constant, an exponential and some peri-
odical functions were chosen as actions. In the third column, the
fluidity function is placed, denoted by V(t). The fluidity function
is equal to the ratio of the dissipated energy and the total en-
ergy of deformation. The hysteretic behaviour of models has to
do a lot with this function. The dashed line functions in the third
column can stand as a measure of the reversibility of the model.
Other types of energies involved in the process of loading are
neglected.
As far as the fluidity of the material is concerned, the relaxa-
tion time is worth recalling. The fluidity can be quantified by its
length. From the proportionality tr =

η
E the conclusion follows

directly: The longer the relaxation time, the more "liquid-like"
behaviour of the material, the shorter the relaxation time, the
more "solid-like" behaviour of the material.

3.4 Structured viscoelastic models

Even before building up huge and heavy constructions like hydro-
power stations, it is inevitable to gather as much information as
possible about the soil beneath the construction. An appropri-
ate geologic exploration always goes ahead in line with the the-
oretical investigations, finding out what kind of soil layers there
are, and what their geometry and physical parameters are. If
the geologic exploration reveals the shapely layered type of soil
at the place where the future heavy construction is planned to
be built on, a chain viscoelastic model is attached to it.
In Figure 3.15, an illustration of Slovak hydro-power station Gabčíkovo
is provided, involving the photo from above, technical drawings
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Figure 3.14: Maxwel viscoelastic model and its strain on stress
material tests. Stress action and strain reaction functions - first
column, deformation energy U(t) and its split to stored (poten-
tial) energy Up(t) and dissipated energy Ud(t) functions - 2nd
column, fluidity function V(t) - 3rd column.
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Figure 3.15: Hydropower station Gabčíkovo, top view and
ground plan (upper images), cross-section, layered soil scheme
and corresponding viscoelastic model - generalized Maxwell
model (lower images), [15].

Figure 3.16: Secondary consolidation of the soil (creep settle-
ment) beneath the Gabčíkovo hydropower station; in situ mea-
surement values within twenty four years, [15].
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and the viscoelastic model of the layered soil. The measure-
ments of creep settlement within the so called soil consolidation
is provided in Figure 3.16. The displacement starts from zero
level down to the negative values, as can be seen in the ordi-
nate range (zero to -150 mm). Hence, the strain trend (creep),
called secondary consolidation of the soil, is a positive func-
tion increasing in time. Local oscillations of displacement val-
ues can be explained by the floating of the water level in the
dam. More details about the soil consolidation can be found in
[15]. The Kelvin chain model is chosen for the soil beneath the
Gabčíkovo hydro-power station, see the viscoelastic model at
the very right-hand side of Figure 3.15. Then, having the consti-
tutive equation of the model, equation (3.114) for n = 4 and the
material characteristics of all layers, we can start the theoret-
ical investigation with the aim of predicting the soil behaviour
under the future heavy load.

3.4.1 Chain viscoelastic models
and Prony series

Chain viscoelastic models are created by n identical submodels
linked in parallel or in series. Consequently, the order of the
corresponding differential constitutive relation is determined by
the configuration of the model. The number of irreducible vis-
cous elements involved is decisive herein.
As it follows from the practice, a chain of several Maxwell mo-
dels linked in parallel or a chain of several Kelvin-Voigt models
linked in series can simulate properly the mechanical behaviour
of many materials with sufficiently prescribed accuracy. As far
as polymers are concerned, the preciseness of the model usu-
ally increases with every additional (M) member involved. But
at the same time, the order of the differential governing equa-
tion increases as well, together with the complexity of computa-
tion and the number of necessary physical coefficients is higher
too. These physical coefficients are usually stipulated by the
inverse task based on the laboratory tests data. As performed
in Figure 3.15, the soil with parallel homogeneous layers can be
modelled by such a model. Chain uni-axial viscoelastic models
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play a significant role in further investigation when enhanced to
three dimensions.

Reducibility of viscous elements
In Figure 3.17 some reducible viscous elements are depicted.
Due to their mutual parallel connection or connection in series,
respectively, they can be reduced by the rules adequate to the
parallel connection or the connection in series, respectively:

η =
∑n
=1 η,

1
η =

∑n
=1

1
η
.

(3.111)

Both reducing rules couple the particular physical characteris-

 

Figure 3.17: Reducible viscous elements - two (or several) vis-
cous elements can be merged into one.

tics similarly to one value of the conditional stiffness (note the
analogy in Chapter 3.2).

Generalized Maxwell model

The generalized Maxwell model (gM) is a complex model in
which n Maxwell submodels are linked in parallel:
(gM) = (M1)|(M2)|...|(M)|...|(Mn).
Eventually, regarding the matter behaviour, in order to ensure
the reversion of the model to the initial stage, one additional
Hookean element is usually joint in parallel to the generalized
Maxwell model , [28, 33], see Figure 3.18)
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Figure 3.18: Generalized Maxwell model.

(gMH) = (M1)|(M2)|...|(M)|...|(Mn)|(H).
In accordance with considerations of the previous chapters we
can set up the constitutive relation (3.25) by using the condi-
tional stiffness tool dealt in Chapter 3.2. For the parallel connec-
tion of n Maxwell submodels, we have the plain sum Ê =

∑n
=1 E

′


of conditional stiffness values E′ of a particular th Maxwell sub-
model. By coupling this form with the individual stiffness of the
Maxwell submodel 1

E′
= 1

E
+ 1

ηD
, we get the resulting conditional

stiffness of (gM), [30]

Ê =
n
∑

=1

EηD

E + ηD
, (3.112)

and similarly the resulting conditional stiffness of (gMH) is

Ê =
n
∑

=1

EηD

E + ηD
+ En+1. (3.113)

Generalized Kelvin-Voigt model

Generalized Kelvin-Voigt model is a connection of n Kelvin-Voigt
submodels in series, (gK) = (K1)− (K2)− ...− (K)− ...− (Kn), see
Figure 3.19. If we want to derive the constitutive relation of (gK)

94



3.4 Structured viscoelastic models

 

Figure 3.19: Generalized Kelvin-Voigt model.

conveniently, we just need to stipulate its conditional stiffness
Ê. From the serial connection of the particular (K) submodels,
we have 1

Ê
=
∑n
=1

1
E′

, with E′ being the particular th member’s

conditional stiffness. The particular conditional stiffness of th

Kelvin-Voigt submodel is E′ = E + ηD, compare with (3.24). So,
the resulting conditional stiffness of (gKn) is, [30]

Ê =
1

∑n
=1

1
E+ηD

(3.114)

and its constitutive equation can be written down in the sense
of the generalized Hook’s law (3.25) and handled according the
further need. Apparently,

ϵ(t) =
n
∑

=1

1

E + ηD
σ(t). (3.115)

Prony series

The Prony series representation of (gM) is a tool utilized mainly
within scientific society dealing with amorphous polymers. In
this chapter, the Prony series are justified, and their relation
with the constitutive equation of (gM) or (gMH) is explained.
We have the conditional stiffness (3.112) of (gM), thus we can
first write down the constitutive relation in the sense of stress
on strain explicit form σ = Êϵ:

σ =
n
∑

=1

EηD

E + ηD
ϵ. (3.116)
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Designating the common denominator in (3.116), and multiply-
ing the equation by it, we get the implicit (purely differential)
constitutive relation of (gM):

σ
n
∏

=1

(E + ηD) =
n
∑

=1

EηD
n
∏

j=1
j 6=

(Ej + ηjD)ϵ. (3.117)

Afterwards, the inverted explicit (integro-differential) the strain
on stress relation can be derived

ϵ =

∏n
=1(E + ηD)

∑n
=1 EηD

∏n
j=1
j 6=
(Ej + ηjD)

σ. (3.118)

For the sake of better clarity, and without loosing the generality
at same time, we now proceed with the two-member (gM2).
We just put n = 2 in (3.112) getting the conditional stiffness of
(gM2) and we can easily write down even its implicit differential
constitutive relation

η1η2σ̈ + (E1η2 + E2η1)σ̇ + E1E2σ =

= η1η2(E1 + E2)ϵ̈ + E1E2(η1 + η2)ϵ̇.

Or, directly by using Ê or 1
Ê

we can either generally express the
stress on strain or strain on stress explicitly. Let us recall that by
indicating the particular action function (stress or strain respec-
tively) course in time, we can compute the response (strain or
stress respectively) directly from the resulting differential equa-
tion. Similarly as in the case of simple viscoelastic models, both
the creep and the relaxation tests can be carried out, for the
sake to obtain the individual rheological time-dependent mate-
rial characteristics E(t) and C(t). Let us e.g. proceed with the
relaxation test. We maintain the instantaneous strain ϵ(t) = ϵ∗

applied at the time instant t0 = 0 at (gM2), constant from that
moment onwards. Initially, at the instant of imposing the strain,
the stress jumps to

σ(0+) =
�

E1 + E2
�

ϵ∗ (3.119)
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and its initial stress rate is

σ̇(0) = −
�E21
η1
+
E22
η2

�

ϵ∗. (3.120)

The linear homogeneous differential equation

σ̈ + bσ̇ + cσ = 0 (3.121)

with constant coefficients  = η1η2, b = (E1η2 + E2η1) and c =
E1E2 corresponds to this relaxation test and together with initial
condition (3.119) and (3.120) it gives the solution

σ(t) = ϵ∗
�

E1e
− E1
η1
t + E2e

− E2
η2
t� =

= ϵ∗
2
∑

=1

Ee
− E
η
t = ϵ∗

2
∑

=1

Ee
− t
t . (3.122)

where t = −
η
E

is the th relaxation time. Enhanced to n and
stipulated for (gMH) it yields the so-called Prony series repre-
sentation, [1, 5]

σ(t) =
�

E0 +
n
∑

=1

Ee
− t
t
�

ϵ∗. (3.123)

Herein, the series E0 +
∑2
=1 Ee

− t
t stands as a time-dependent

relaxation modulus of the model (see Chapter 3.2.2). With t →
∞ the series (3.123) converges to σ0 = E0ϵ∗. In some discrete
points, its values can be stipulated experimentally in the creep
or relaxation test. These values are called the Prony coeffi-
cients, [35].

3.4.2 Recurrent models

A recurrent viscoelastic model is based on a repeating proce-
dure of connecting the same members to the previous sub-
model. The recurrent (branch-chained) models can stand be-
hind a great number of polymers, natural biomaterials and soils.
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Figure 3.20: Recurrent (branch chain) Voigt model (rV) (left);
characteristic recurrence unit (right).
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Figure 3.21: Recurrent (branch chain) Kelvin model (rK+1) (left);
characteristic recurrence unit (right).

In this chapter we propose two models - the simplest recurrent
configurations: In each step of the recurrence, one fundamen-
tal element is connected in parallel to the current model. This
way, a new model arises. Then the other element is connected
in series to the existing model. These two steps are repeated
until the required level of recurrence is reached.
We can follow the creating procedure in Figure 3.20: at the
beginning one viscous matter (N) is connected in parallel to
the very first (H). The serial connection of another (H) follows
afterwards, followed by next (N) connection in parallel, next
(H) in series, etc., until a recurrent Voigt model (rV+1) =
[ . . . [(H1)|(N1)− (H2)] |(N2)− · · · − (Hn)] |(Nn)− (Hn+1) is built up
of the required length.
Let us trace the conditional stiffness advancement of (rV+1)

step by step: first, we have the conditional stiffness of a paral-
lel connection of an th (N) matter with the previous submodel
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of the th level with conditional stiffness ĒV (D). After such con-
nection the resulting conditional stiffness is

E′ (D) = Ē
V
 (D) + ηD. (3.124)

Afterwards, we realize the serial connection of (H+1) to the very
recently arisen model. Using (3.69) yields

1

ĒV+1(D)
=

1

E′ (D)
+

1

E+1
=

1

ĒV (D) + ηD
+

1

E+1
=

=
ĒV (D) + ηD + E+1
�

ĒV (D) + ηD
�

E+1
⇒ ĒV+1(D) =

�

ĒV (D) + ηD
�

E+1

ĒV (D) + ηD + E+1
. (3.125)

If we put ĒV1 (D) = E1, we can affirm (3.125) as the conditional
stiffness recurrence form of (rV+1).
If we start with (N) and alternate the parallel connection of (H)
to the current model with the serial connection of (N) up to
the  + 1st level we get, see Figure 3.21, the recurrent Kelvin
model of the length  + 1: (rK+1) =
=[ . . . [(N1)|(H1) − (N2)] |(H2) − · · · − (N)] |(H) − (N+1).
Again, the total conditional stiffness of th level is computed re-
currently:

1

ĒK+1(D)
=

1

E′ (D)
+

1

η+1D
=

1

ĒK (D) + ηD
+

1

η+1D
=

=
ĒK (D) + ηD + η+1D
�

ĒK (D) + ηD
�

η+1D
⇒

⇒ ĒK+1(D) =

�

ĒK (D) + ηD
�

E+1

ĒK (D) + ηD + E+1
. (3.126)

If we put ĒK1 (D) = η1D, we can affirm that (3.126) as the condi-
tional stiffness recurrence form of (rK+1).
As it is undoubtedly apparent to the reader, many other recur-
rent models can be created by repeating any of steps, e.g. by
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alternating the parallel and serial connections of submodels in-
stead of the elementary models (H) and (N).

Algorithmization of deriving the constitutive equation

If we want to automatize the determining of the constitutive
equation for some complex structured viscoelastic model, both
the geometric and the physical relations have to be formalized
and generalized. This was realized in the conditional stiffness
concept. Let us summarize the required inputs and tools and
yielded outputs that are reasonable within the algorithmization:

Inputs

- structural form of the model

- physical characteristics of all fundamental elements

Outputs

- pictogram of the model

- differential form of the constitutive relation

Tools

- possible reducibility of viscous elements disclosing and elim-
inating

- generalization - repetitive parts or recurrence detection, or
splitting into blocks if no generalization exists

- conditional stiffness differential operators enfolding geom-
etry feature, i.e. serial and parallel connection rules and
particular physical equations of members involved

Upon the previous assumption, a "rheological calculator" was
developed by [52], and a basic appearance revealing the func-
tionality of this interactive program is provided in Figure 3.22.
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Figure 3.22: Calculator of constitutive equation of viscoelastic
models, [52].
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3.5 Three-dimensions. Anisotropy

In Chapter 3.1.3 we dealt with the global constitutive relation
derivation of a viscoelastic model in the one-dimensional case.
However, all considerations can be extended to two or three di-
mensions, where also an anisotropy can come into account.
From now on in this chapter, we will proceed with three dimen-
sions, keeping the two-dimensional analogy in mind.
Generalized Hook’s law in the sense of conditional stiffness in
three dimensions for anisotropic matter can be written in the
form

σ = Ĥϵ. (3.127)

Herein, Ĥ, the elastic modulus tensor operator, includes both
the volumetric and the deviatoric contribution to the deforma-
tion, as well as the configuration (geometry) of the entire model.
It is apparent from Chapter 3.2, that, in general, it is a symmet-
ric positive definite 4th-order integro-differential tensor opera-
tor with symmetry in all directions, Ĥ = Hjk = Hkj = Hkj = Hkj.
It is worth recalling here Chapter 3.2.3, which performs how
each constitutive relation, e.g. equation (3.127), can be rewrit-
ten in several mutually equivalent forms, employing a differen-
tial, an integral or an integro-differential tensor operator, [3].
Analogously to the one-dimensional case

K(r)σ = K(s)ϵ,

Q(r)ϵ = Q(s)σ,
(3.128)

where
K(r) =

∏r
=1(

∂
∂t + κ), K(0) = 1,

Q(r) =
∏r

=1(
∂
∂t + λ), Q(0) = 1,

(3.129)

are scalar differential operators and

K(s) =
∑s
=1K

() ∂

∂t
,

Q(r) =
∑s
=1Q

() ∂

∂t

(3.130)

are tensor differential operators (tensor of conditional stiffnesses)
whose each component couples the time derivatives operators
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with material properties, see the scalar interpretation e.g. in
(3.24); κ and λ are the inverse values of the relaxation and the
retardation time values, respectively. In the case when we have
the tensor operator functions of relaxation Y(t) and retardation
J(t) at our disposal, from previous creep and relaxation tests,
we can express the constitutive relation (3.127) in the explicit
stress on strain form or strain on stress form, integro-differential
operators used:

σ(t) =
∫ t

0
Y(t − τ)

∂ϵ(t)

∂t
(3.131)

or

ϵ(t) =
∫ t

0
J(t − τ)

∂σ(t)

∂t
(3.132)

Let us recall that since the linear viscoelasticity theory is em-
ployed, the superposition principle is applied, and in the case of
an isotropic material, the deviatoric and volumetric deformation
can be treated separately. The analogy to the elastic deforma-
tion is used, where G is the deviatoric modulus, and K is the
volumetric elastic modulus, [7, 8, 26]:

G = E
2(1+μ) ,

K = E
3(1−2μ) .

(3.133)

The time-dependent characteristics of the viscoelastic material
can also be expressed in the form of the Prony series. For the
generalized Maxwell model, we have

G(t) = G∞0 +
∑n
=1Ge

− t
t ,

K(t) = K∞0 +
∑m
=1 Ke

− t
t .

(3.134)

Moreover, also the integral forms (3.131) and (3.132) can be
split into the deviatoric and the volumetric part, [34]:

∫ t

0
2G(t − τ)

dϵde
dτ

dτ + 
∫ t

0
K(t − τ)

dϵo
dτ

dτ. (3.135)
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3.6 Anisotropic material
under pulsating load

Three-dimensional study

3.6.1 Pulsating load imposed on anisotropic
viscoelastic body.
Storage and loss moduli

Even nowadays, in accordance with the linear viscoelasticity
theory, engineers usually consider a simplified isotropic homo-
geneous material. In such case, the relaxation tensor can be
expressed, [43], as

Hjk(t) =
1

3

�

H2(t)−H1(t)
�

δjδk+
1

2

�

H2(t)
��

δkδj+δδjk
�

, (3.136)

which is the most general form of the isotropic 4th-order tensor.
Here, H1(t) and H2(t) are independent relaxation functions and
δj is the Kronecker operator

δj =
§

0  6= j
1  = j

Hence, the explicit constitutive relation σ - ϵ for an isotropic
homogeneous material acquires the form

Hjk(t) =
∫ t

−∞

1

3

�

H2(t) − H1(t)
�

δjδk+

+
1

2

�

H2(t − τ)
��

δkδj + δδjk
�dϵk(τ)

dτ
dτ. (3.137)

However, for more complex engineering problems it is often in-
evitable to deal with a physically more precise approach, that
involves an anisotropy at all.
Analogously to the expression (3.47) in one-dimensional case,
the three-dimensional explicit constitutive equation (Duhamel
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Figure 3.23: Scheme of analysed structural element, [46].

hereditary integral) can be derived, as well, where an anisotro-
pic material is considered in general. Written componentwisely,
it acquires the form, [3]:

σj(t) =
∫ t

−∞
Hjk

�

t − τ
�dϵk(τ)

dτ
dτ, (3.138)

where σj(t) and ϵk(t) are the 2nd-order stress and strain ten-
sors components, Hjk(t) the components of the 4th-order re-
laxation tensor acquiring zero value on the time interval (−∞,0〉.
Assuming that the periodic sinusoidal strain load is an exter-
nal action, we observe the reaction, the stress tensor function.
Since the strain is a harmonic function of time, it can be ex-
pressed as

ϵj(t) =
o
ϵjeiωt, (3.139)

with imaginary unit i =
p
−1,

o
ϵj being the strain amplitude and

ω [rd/s] the angular frequency. Whenever needed, the an-
gular frequency ω can be expressed in terms of the ordinary
frequency ν [Hz]: ω = 2πν.
Each component of the relaxation modulus tensor Hjk(t) has a
bounded variation on an arbitrary closed subinterval of (−∞,∞)
(see e.g. [7]). From the symmetry of both stress and strain
tensors, the symmetry of the relaxation modulus follows in all
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directions as well, [44]:

Hjk(t) = Hjk(t) = Hjk(t). (3.140)

From the thermodynamics we know that every process of a sys-
tem under an unchanging load tends to its equilibrium. That is
why it is worth to express the relaxation modulus, a function of

time, as a sum of a tensor of non-negative constant values
∞
Hjk

- equilibrium modulus and a time-dependent residual modulus
Ĥjk(t):

Hjk(t) =
∞
Hjk + Ĥjk(t). (3.141)

As the process of the system tends towards the equilibrium
stage the residual modulus

Ĥjk(t)→ 0 for t→∞. (3.142)

and only the time independent tensor
∞
Hjk remains in (3.141),

standing as the material modulus of the stationary state con-
stitutive relation. Each component of the equilibrium modulus
tensor is always positive for solid bodies and equal to zero for
liquids, e.g. [34].
When substituting (3.139) and (3.141) to (3.138), we have the
explicit constitutive equation for a pulsating load in the form

σj(t) =
∫ t

−∞

�∞
Hjk + Ĥjk(t − τ)

�

d

o
ϵkeiωτ

dτ
dτ. (3.143)

The first addend
∞
Hjk in the integral (3.143) can be computed in

sense of Stieltjes yielding a function of ω whilst in the second
addend the derivative of

o
ϵkeiωτ with respect to time can be

evaluated τ:

σj(t) =
∞
Hjk

o
ϵjeiωt + iω

o
ϵj

∫ t

−∞
Ĥjk(t − τ)eiωτdτ. (3.144)

Let us proceed with (3.144) by using the substitution χ = t − τ.
We obtain

σj(t) =
o
ϵjeiωt

�∞
Hjk − ω

∫ ∞

0
Ĥjk(χ)eiωχdχ

�

.
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Figure 3.24: Stress and strain in time t with the phase shift;
T is the period of action and reaction, ω [rad/s] is the angular
frequency, ψ [rad] is the phase angle between the stress and
strain sinusoid, [39].

Now, when employing the Euler form

e−iωτ = cos(ωτ) − i sin(ωτ), (3.145)

we get

σj(t) =
o
ϵjeiωt

�∞
Hjk + ω

∫∞
0 Ĥjk(χ) sin(ωχ)dχ+

+iω
∫ ∞

0
Ĥjk(χ) cos(ωχ)dχ

�

. (3.146)

Physically speaking, if we do not consider damping at the me-
chanical reaction of the model, then the stress response corre-
sponding to a certain stationary pulsating deformation load ac-
quires the same periodical character as the strain action. Hence,
the amplitude stays at the same value in time too, [37]. Indeed,
the response delay after the load, expressed as the time shift

Δt = T
α

2π
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appears, with T = 2π
ω being the period and α the phase angle

(see Figures 3.24 and 3.25). It means that for this special kind
of load, the general stress-strain relation (3.138) takes the form

σj(t) = H∗jk(ω)
o
ϵjeiωt. (3.147)

Herein, the expression in square brackets in (3.146)

∞
Hjk + ω

∫ ∞

0
Ĥjk(χ) sin(ωχ)dχ + iω

∫ ∞

0
Ĥjk(χ) cos(ωχ)dχ

is known as the dynamical modulus and is denoted by H∗jk(ω)
within the viscoelasticity theory. Since σj is a complex func-
tion of frequency ω, it is natural to split it into the real and the
imaginary part

H∗jk(ω) = H̄jk(ω) + i
¯̄Hjk(ω). (3.148)

Moreover, the real and the imaginary part of the dynamical mo-
dulus have their names - storage modulus and loss modulus,
respectively. Both moduli are reasoned physically too, [22, 23].
Accordingly, it follows from (3.146) that in our special load type,
the pulsating load, the storage and the loss moduli are

H̄jk(ω) =
∞
Hjk + ω

∫ ∞

0
Ĥjk(χ) sin(ωχ)dχ, (3.149)

¯̄Hjk(ω) = ω
∫ ∞

0
Ĥjk(χ) cos(ωχ)dχ (3.150)

respectively. Moreover, the ratio

¯̄H(ω)

H̄(ω)
= tnα(ω) (3.151)

represents the so-called loss tangent, [46].
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Figure 3.25: Loss tangent.

Remark
In [7], there is a complaint of some misunderstandings in the
terminology regarding the term dynamical modulus H∗jk(ω).
Namely, the term "dynamical" does not fit here well, since it
does not indicate explicitly whether or not inertial members are
retained in the momentum equations. Maybe the name "un-
damped pulsation modulus" would be more appropriate in this
case as suggested by [13].
For physical purposes, we are supposed to examine the impact
of possible limiting values of action frequency on the resulting
dynamical modulus. For this purpose, recalling (3.142) we re-
arrange the integrals in (3.149) and (3.150) for a moment by
integrating by parts getting

H̄jk(ω) =
∞
Hjk + Ĥjk(0) +

∫ ∞

0

dĤjk(χ)

dχ
cos(ωχ)dχ, (3.152)

and

¯̄Hjk(ω) = −
∫ ∞

0

dĤjk(χ)

dχ
sin(ωχ)dχ. (3.153)

After such a rearrangement, we can conveniently follow the im-
pact of limiting frequency values:

• For ω→ 0 we have the static load

H̄jk(0) =
∞
Hjk = Hjk(t)|t→∞ (3.154)
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¯̄Hjk(0) = 0. (3.155)

• For a very high frequency ω → ∞ we get the impact load.
After substitution ωχ = τ we get

lim
b→∞

H̄jk(b) =
∞
Hjk + Ĥjk(0) = Hjk(t)|t→0 (3.156)

lim
ω→∞

¯̄Hjk(ω) = 0. (3.157)

The formulas (3.154) and (3.157) represent the limit values of
the real and imaginary parts of the complex relaxation modulus.
Since the zero frequency corresponds to a static load, it is ap-
parent that the imaginary part (3.154) has to be zero. Relations
(3.156) and (3.157) document the fact that in the case of a very
high frequency of excitation, the imaginary part of the complex
module converges to zero. As far as the mechanical response is
concerned, the system behaves as an elastic anisotropic body.
It is worth emphasizing that forms (3.149) and (3.150) physi-
cally perform the dependence between the frequency and the
mechanical properties of the body expressed in the form of the
relaxation moduli. Therein, tensor H̄jk(ω) is a component of
the stress-strain ratio in the direction of the deformation phase,
[42], whereas the tensor ¯̄Hjk(ω) is declined from that direction
by the angle of 90◦.
Sometimes there is a need to express the constitutive equation
(3.147) with the phase shift φ directly incorporated, [22]:

σj(t) = H∗jk(ω)
o
ϵkei(ωt+φ).

In such a case, it is explicitly given that compared to the pe-
riodical deformation load, the stress response is delayed by φ
(see Figure 3.26). The delay can be computed, measured and
recorded. Nevertheless, we are mostly focused on the mechani-
cal behaviour of a device in terms of the danger of its damage.
Thus there is no special need to trace the time shift between
the action and the reaction. The relations (3.154) - (3.157) doc-
ument the fact that in both zero and infinity limiting cases of fre-
quency, the behaviour of an anisotropic body is almost purely
elastic.
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Figure 3.26: Periodical course of stress σ and strain ϵ of a vis-
coelastic material, [42].

3.6.2 Viscoelastic body under a pulsating load.
Fourier transform.

Integral transform

Integral transforms are used for solving various science and
technology tasks. The Fourier integral transform allows an ape-
riodic function to be expressed as an integral sum over a con-
tinuous range of frequencies, [6]. It is commonly used in linear
tasks of the continuum mechanics. The form of direct Fourier
transform is, see e.g. [22]:

F(ƒ (t)) = ƒ̃ (ω) =
∫ ∞

−∞
ƒ (t)e−iωtdt. (3.158)
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An original - the function ƒ () is transformed to its image, ƒ̃ ().
The inverse Fourier transform reverts the function transformed
by the Fourier transform (image) to the original form:

F−1(ƒ̃ (ω)) = ƒ (t) =
1

2π

∫ ∞

−∞
ƒ̃ (ω)eiωtdω. (3.159)

Fourier transform is often used in the form of its cosine and sine
forms as well. Apparently, both the sine and the cosine Fourier
transform is yielded by a split of Fourier transform (3.158) by
using the Euler form (3.145); and alike the inverse Fourier trans-
form (3.159):

Fc
�

ƒ (t)
�

= ƒ̃ (ω) =
∫ ∞

0
ƒ (t) cos (ωt)dt (3.160)

F−1c
�

ƒ̃ (ω)
�

= ƒ (t) =
2

π

∫ ∞

−∞
ƒ̃ (ω) cos (ωt)dω (3.161)

Fs
�

ƒ (t)
�

= ƒ̃ (ω) =
∫ ∞

0
ƒ (t) sin (ωt)dt (3.162)

F−1s
�

ƒ̃ (ω)
�

= ƒ (t) =
2

π

∫ ∞

−∞
ƒ̃ (ω) sin (ωt)dω (3.163)

In our investigation we focus on the mechanical response of a
viscoelastic pad exposed to a pulsating load e.g. due to the ro-
tating machine put on it. Regarding the spinning, the frequency
is more distinctive factor than time itself as far as the mechani-
cal response is concerned. Obviously, we use those sine and co-
sine Fourier transforms as a useful tool for building up a switch
between the constitutive relations written in the sense of time
and those written in the sense of frequency.
The storage and loss moduli (3.149) and (3.150) can be re-
garded as Fourier images, hence the originals can be derived
by using (3.163) and (3.161):

Ĥjk(t) =
2

π

∫ ∞

0

H̄jk(ω) −
∞
Hjk

ω
sin(ωt)dω, (3.164)

Ĥjk(t) =
2

π

∫ ∞

0

¯̄Hjk(ω)

ω
cos(ωt)dω. (3.165)
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Next, for t > 0, we can rearrange (3.164) as follows:

Ĥjk(t) =
2

π

∫ ∞

0

H̄jk(ω)

ω
sin(ωt)dω−

2

π

∞
Hjk

∫ ∞

0

sin(ωt)

ω
dω =

=
2

π

∫ ∞

0

H̄jk(ω)

ω
sin(ωt)dω −

∞
Hjk,

where we have taken that
∫∞
0

sin(ωt)
ω dω = π

2 into account. Now,
we have

Ĥjk(t) +
∞
Hjk = Hjk(t) =

2

π

∫ ∞

0

H̄jk(ω)

ω
sin(ωt)dω, (3.166)

the ready-to-use relaxation coefficient. Substituting it in the
stress-strain relation (3.138) yields the resulting explicit consti-
tutive equation for an anisotropic material subjected to periodic
pulsating strain load

σj(t) =
2

π

∫ t

−∞

∫ ∞

0

H̄jk(ω)

ω
sin

�

ω(t − τ)
�

d
ϵk(τ)

dτ
dωdτ. (3.167)

Consequently, by using the Fourier transform we get the Fourier
image for the stress tensor function σ̃j(ω)

σ̃j(ω) =
∫ ∞

−∞

�

∫ t

−∞
Hjk(t − τ)

dϵk(τ)

dτ
dτ
�

e−ωtdt. (3.168)

Well, whenever having σ̃jk(t), by using the inverse Fourier trans-
form we get the Fourier original σj(ω). Moreover, when we
couple the transforms (3.159) with (3.148) - (3.150), we can
express the constitutive equation (3.168) in the shortened form

σ̃j(ω) = H∗jk(ω)ϵ̃k(ω). (3.169)

Considering the type of solved problems, we can now use con-
stitutive relations either in the sense of time t (3.147) or in the
sense of frequency ω (3.169).
The elements of the relaxation spectrum set of an anisotropic
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3.6 Anisotropic material
under pulsating load

material, are vectors with their components corresponding to
the particular directions. In our case, the case of orthotropy
(see Figure 3.23), the two-dimensional vectors are present as
elements of both the retardation and relaxation spectra. The
corresponding components can be measured in a lab, each one
separately, by imposing the load in the corresponding direction.
The resulting more "solid-like" behaviour is performed along-
side the main reinforcement (x-axis in the Figure 3.23) and more
"liquid-like" behaviour in all perpendicular directions.
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Chapter 4

VISCO
ELASTO
PLASTICITY

4.1 Plasticity in rheological models.
Variation inequality

In Chapter 2.1.2, a plastic element was introduced among the
basic rheological matters. Since its mechanical behaviour ex-
hibits singularity, the constitutive relation cannot be expressed
by a function; therefore the Saint-Venant variational inequality
is exploited, see the third form in Definition 3 in Chapter 2.1.2.
When a plastic element is connected in parallel with an elastic
one, the geometrical equations of (H)|(StV) arise:

ϵ = ϵH = ϵStV
σ = σH + σStV .

(4.1)

Geometric equation combined with the attached physical rela-
tions, give a variational inequality, [20, 19]:

σH = E ϵH
ϵ̇StV

�

σStV − σ̃
�

≥ 0, ∀σ̃ ∈ 〈−σC, σT〉.
(4.2)

can be combined into one as follows:

ϵ̇ (σ − Eϵ − σ̃) ≥ 0, ∀σ̃ ∈ 〈−σC, σT〉. (4.3)
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Figure 4.1: Stop operator.

And besides - since the only contribution to the entire potential
energy comes from the elastic element, the potential energy is
Up =

1
2Eϵ

2
H.

The thermodynamic consistency of the model follows actually
from the variational inequality (4.3) (with σ̃ = 0).
For (H)− (StV), the combination in series of both (H) and (StV),
we have the corresponding geometric equations

ϵ = ϵH + ϵStV ,
σ = σH = σStV .

(4.4)

Coupling the geometric equations with the physical relations of
particular involved members (2.7) and (4.3), we can easy derive
the resulting global governing variational inequality, which is
the constitutive equation of the model (H) − (StV):

�

ϵ̇ −
1

E
σ̇
�

(σ − σ̃) ≥ 0, ∀σ̃ ∈ 〈−σC, σT〉. (4.5)

The potential energy is Up =
1
2Eϵ

2
H again and, the thermody-

namic consistency follows directly from (4.5) when σ̃ = 0 is
taken. The yielded variational inequalities in the cases, i.e. par-
allel and serial connection of plastic matter, are of the same
type and according to the Theorem 1.9 in [20], there exists a
unique solution to each of the variational inequalities, which
are expressed by using the Play operator or the Stop operator
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Figure 4.2: Play operator.

respectively; both hysteresis operators are depicted in Figures
4.1 and 4.2.
Hysteresis operators are rate-independent. They involve the
memory effects, which means that the current stage of the sys-
tem depends on its previous history.
More details about hysteresis operators can be found e.g. in
[20, 49, 4, 18].

4.1.1 Viscoelastoplastic models
and applications

Within the rheology of composite materials, there exists a spe-
cial group with materials based on silicates. This group involves
all kinds of concretes and reinforced concretes.
Due to the load subjected (mechanical, thermo-mechanical and
chemo-mechanical), on the constructions built from concrete
or steel-reinforced concrete, first an instantaneous deformation
occurs, then short-term (maturing) and long-term deformations
continue. The long-term change persists even within several
years. When the fresh standard concrete mixture is poured into
a mould, it immediately begins to solidify along with chemi-
cal processes, resulting in a volume decrease independent of
the load. Additionally, the imposed load activates a creep, and
consequently the hysteresis in the response (dependent on the
load/unload period) is always exhibited. The creep of concrete
is of high significance among civil engineers, and it should be

119



VISCOELASTOPLASTICITY

Figure 4.3: Transversally overloaded concrete beam; relocation
of the compressed and stretched fibres domain (left), rupture
due to the threshold achieved, [19].

predicted properly.

4.1.2 Concrete mechanical response
to heavy load

It is a well-known fact that the compression strength of concrete
is much higher than its tensile strength. That is also the reason,
why the reinforcement is always placed not in the middle, but
on the side where the tension of the material fibres is expected.
Beams are reinforced at the bottom, balcony consoles at the
top, etc.
The frequent deformation of the mature concrete occurs not
only as a consequence of the load but also due to changes
in temperature or humidity of the ambient. Moreover, since
the concrete is not homogeneous, as its components are tiny
stones, the deformations are often accompanied by microcracks
due to the stress peaks inside of it. The volumetric deformation
of concrete is not negligible - when exposed to compression, the
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volume of concrete decreases, and when exposed to tension,
the volume increases. When the load magnitude oscillates, e.g.
tension and compression alternate, hysteresis occurs, [42].
Nevertheless, for normal operating regime, the linear behaviour
of concrete is phenomenologically ascertained, and within the
computations a proportionality of the mechanical load and the
response of concrete is assumed; the superposition principle is
held.

4.1.3 Simple rheological model of concrete
with failure. Derivation of the constitu-
tive relation

The simplest viscoelastoplastic model of specific concrete can
stand behind the overloaded concrete as far as the mechanical
behaviour is concerned, see Figure 4.4. Since a plastic change
is expected (see Figure 4.3), the elastic element involved in the
model representing the linear bahaviour, is amended with a se-
rial connection of the assemblage of one viscous and one rigid-
plastic elements merged in parallel, [42]. Accordingly, the rheo-
logical model’s structural form is (concrete) = (H)−[(N)|(StV)],
[42].
The basic physical relations related to the particular elementary
members are taken as in Section 2.1.2. The needed parameters
are: E - Young elastic modulus of (H), η - the viscous coefficient
of (N), σT and σC - the stress tensile and compressive thresh-
olds of the stress of (StV). The derivation of the constitutive
relation begins with assembling of the corresponding geometric
and physical equations, and the subindexes of the strain and
the stress variables are used to indicate the incidence with the
particular member. The geometrical equations of the concrete,
following from its configuration are:

ϵ = ϵH + ϵN
ϵN = ϵStV
σ = σH = σN + σStV ,

(4.6)

where σStV ∈ 〈−σC, σT〉. The physical equations are (4.2) and
(2.11). As far as the energy is concerned, even here we see
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Figure 4.4: Simplified rheological model of the concrete,
(concrete) = (H) −

�

(N)|(StV)
�

.

that the elastic energy Up =
1
2Eϵ

2
H is the only energy of the entire

system that is kept for future recovery. The model is thermody-
namically consistent. We get the thermodynamic consistency

ϵ̇σ −
1

2
Eϵ̇2H ≥ 0

from the variational inequality (4.10) for σ̃ = 0.
Deriving the overall constitutive relation of the model means es-
tablishing the relation between global stress and global strain of
the model expressed only in the sense of the physical parame-
ters of the particular elements. We are supposed to couple the
geometric and physical relations to eliminate all sub-indexed
variables:

σH = EϵH,
σN = η ϵ̇N =⇒ ϵN = ϵ − ϵH = ϵ − 1

EσH,
σ = EϵH = η ϵ̇N + σStV ,
σStV = σ − η ϵ̇N = σ − ηϵ̇ + η

E σ̇.

(4.7)

The Saint-Venant variational inequality of the rigid-plastic mat-
ter indexed by (StV) within the rheological model of concrete
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is
ϵ̇StV (σStV − σ̃) ≥ 0,∀σ̃ ∈ 〈−σC, σT〉. (4.8)

And having in mind that

ϵStV = ϵN = ϵ − ϵH = ϵ −
σ

E
, (4.9)

we get the resulting variational inequality
�

ϵ̇ −
σ̇

E

�

�

σ − ηϵ̇ +
η

E
σ̇ − σ̃

�

≥ 0 ∀σ̃ ∈ 〈−σC, σT〉 (4.10)

With the notation

̇ = ϵ̇ −
σ̇

E
, (4.11)

we can rewrite (4.10) as

̇
�

σ − η̇ − σ̃
�

≥ 0, ∀σ̃ ∈ 〈−σC, σT〉. (4.12)

If the expression σ − η̇ in (4.12) belongs to the open interval
(−σC, σT), the expression in the first brackets can acquire either
positive or negative values when σ̃ changes. That is why ̇ = 0
has to be fulfilled in this case.
Moreover, we have to inspect both tensile and compressive
margins as well:

• When the compressive margin σ − η̇ = −σC is taken, it is
evident that for all σ̃ ∈ 〈−σC, σT〉 : σ−η̇− σ̃ ≤ 0. Therefore,
to fulfil the inequality (4.12), ̇ ≤ 0 has to be valid. Hence,

ϵ̇ −
σ̇

E
≤ 0. (4.13)

• Similarly, if σ − η̇ = −σT then it has to hold ̇ ≥ 0, or

ϵ̇ −
σ̇

E
≥ 0. (4.14)

Indeed, by using the play operator, [20], both marginal cases
can be coupled in one relation

̇ =
1

η
(σ − P(σ)), (4.15)

123



written in terms of , where P is the projection on the interval
〈−σC, σT〉 in the sense of the convex analysis, [20]. Finally, when
we carry out the backward substitution of  given by (4.11) we
get the relation σ ∼ ϵ, the required global constitutive relation

ϵ̇ =
σ̇

E
+
1

η
(σ − P(σ)). (4.16)

representing the mechanical behaviour of the model.



Conclusion

Nowadays, when new and new materials of certain specific pro-
perties are required by medicine, tissue engineering, technolo-
gies, structural and civil engineering, the food industry, etc.,
material science is experiencing its boom together with related
disciplines of chemistry. Rheology plays a significant role here.
Each year, plenty new materials are invented by engineers. A
lot of them end up being of no use, some of them are excellent.
All eligible materials have to be tested properly, as far as their
mechanical behaviour is concerned, prior to their placement in
service. The type of expected load, as well as other assumed
non negligible physical or chemical circumstances, have to be
taken into account carefully. And this is the point where rheol-
ogy reveals its importance. As soon as the constitutive relation
of the material is known, either the relaxation modulus E(t) or
the creep compliance C(t) is employed, and various tests can
be executed theoretically. This way, the behaviour prediction
is provided, and the life span of the material can be approxi-
mately estimated together with its possible overloading either
due to too high magnitude of the load or due to the time length
of the load (though of low magnitude) exposition. Of course,
the accordance with appropriate laboratory tests is required as
well. Underestimation of both theoretical and laboratory investi-
gation can bring fatal consequences in failures of materials. Let
us just think of biocompatible materials, orthopaedic prosthe-
ses, materials used in technical components, civil, mechanical,
chemical engineering materials, etc.
The time-dependent material characteristics - the relaxation mo-
dulus E(t) and the creep compliance modulus C(t) are of great
importance within rheology. They stand as an effective tool for
the categorization of materials.
The state-of-the-art rheology under the isothermal and isobaric
conditions reveals the time-dependent moduli participation in
other phenomena, as a generalization to the multi-dimensional
case, numerical approximation, and integral interpretation of
the constitutive relations. Accordingly, the hereditary integrals
as an inverse to the conditional stiffness, carry the information
about the load and the mechanical response history. The time



invariant and time variant behaviour is focused. Since polymers
are typically represented by the chain rheological model, the
Prony series approximation is commonly employed with another
viscoelastic phenomena - time retardation and time relaxation
spectra are utilized. As rheology is a relatively young science,
theoretical and applied investigation of viscoelastic models and
rheological models, in general, are still in the focus of many
researchers. The wide use of such investigations is undoubted.
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Nomenclature

A action
A [P] anisotropic elasticity tensor
Ade [P] deviatoric anisotropic elasticity tensor
Ao [P] volumetric anisotropic stiffness tensor
(B) Burgers model
C(t) [P] compliane modulus
E [P] Young elasticity modulus
E(t) [P] relaxation modulus
Ê conditional stiffness
(gK) generalized Kelvin model
(gM) generalized Maxwell model
G deviatoric modulus
hc [

J
s.kg] flux coefficient of non-mechanical energy

h() Heaviside function
H elastic modulus
∞
H equilibrium modulus
Ĥ residual modulus
H∗ dynamical modulus
H̄ storage modulus
¯̄H loss modulus
Hα [ J] nonmechanical energy
(H) Hookean element
K volumetric modulus
(K) Kelvin - Voigt model
(M) Maxwell modell
~n outer normal vector
ND ∈ 〈0,1〉 [−] Deborah number
(N) Newtonian element
(PTh) Poynting - Thompson model
~q heat flow vector
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Q [ J] heat
~r [m] position vector
(rK) recurrent Kelvin model
(rV) recurrent Voight model
R reaction
S [ JK ] global entropy of the body
(S) Schofield model
t [s] time
T [K] temperature
U [ J

m3.s
] deformation energy per volume and time unit

Ud [
J

m3.s
] dissipated energy per volume and time unit

Up [
J

m3.s
] potential energy per volume and time unit

W [ J
m3.s

] work of outer forces per volume and time unit
(Z) Zener model
ϵ(t), ϵ [−] strain, strain function in time, strain tensor

ζ [m
2

s ] dynamic viscosity coefficient
η [P.s] dynamic viscosity coefficient
λ [−] Lamé coefficient
λc [

1
s ] characteristic equation root within creep test

λr [
1
s ] characteristic equation root within relaxation test

μ [−] Poisson ratio
ρ [ kg

m3 ] density
σ(t),σ [P] stress, stress function in time, stress tensor
σde deviatoric viscosity tensor
σo volumetric viscosity tensor
τ [P] shear stress in Chapter 2.1.2
τ [s] time; after Chapter 2.1.2
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Index

action-reaction 42, 43, 44

anisotropic body tensor 29

anisotropic material 103

aponeurosis 72

bounded variation 63

branch chain model 97

chain model 89, 93, 94

characteristic equation 53

compliance modulus 44, 46, 56

conditional stiffness 50, 51

configuration of rheological model 25

connection

- in parallel 35

- in series 36

consolidation 91, 91

constitutive equation, physical equation 9, 25, 27

constitutive functional 63

convolution integral, Duhamel integral, hereditary
integral 9, 60

creep, creep test, creep function 23, 43, 44, 66, 66,78

damping 13, 32, 41, 66

dash-pot, piston 14

differential equation
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- linear ordinary 53

dissipation rate 26

dissipative energy 19, 26, 32

Duhamel integral, hereditary integral, convolution
integral 9, 60

elastic member, elastic element 29

element

- elastic 29

- elementary, fundamental 27

- viscous 30

energy

- dissipated 19, 26, 32

- potential 26, 30, 34, 77, 84

- stored, 26, 30, 34, 77, 84

fundamental element, elementary member 27

generalized Kelvin - Viogt model 94

generalized Maxwell model 91

geometric equation 36, 75

hereditary integral, convolution integral, Duhamel
integral 9, 60

Hook’s law 29

- generalized 51

hysteresis, hysteresis operators 21, 119

Kelvin-Voigt model 36

linear ordinary differential equation 53
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member

- elastic 29

- elementary, fundamental 27

- viscous 30

model

- Burgers 72

- chain 89

- Kelvin-Voigt 36, 48

- generalized 94

- Maxwell 36, 48

- generalized 91

- of overloaded concrete 120

- Poynting - Thompson 52

- of concrete under a non-destructive load 52

- recurrent (branch chain) m. 97

- rheological m. 12, 24, 27, 27

- Schofield 53

- viscoelastic 41, 47, 56

- of aponeurosis 72
- of soil beneath a construction 91, 91

- viscoelastoplastic 27, 117

- Zener 49, 53

modulus

- compliance 44, 46, 56

- deviatoric 29, 56, 30, 103, 104

- dynamical 109, 110

- elastic 24, 46, 103, 104

- equilibrium 107
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- loss 105, 109

- of elasticity 46, 103, 104

- relaxation 44, 47, 56

- residual 87

- retardation, creep compliance 44, 46, 56

- storage 109

- volumetric 29, 30,103

Newton law for viscosity 27

non-linearity 10, 83

operator

- differential 12, 50 73

- integro-differential 104

- Play 119

- Stop 118

overloading, fatigue, failure 120

- transversal 120

parallel connection 35

physical equation, constitutive equation 9, 25, 27

piston, dash-pot 14

plastic member, plastic element, Saint-Venant member 27,
28, 32, 33

Prony series 92

pulsating load 105

reaction, mechanical 42, 43, 44

recovery, mechanical 29, 77

recurrent model 97
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reducibility of configuration 93

relaxation, relaxation function 44, 47, 56

relaxation spectrum 70

retardation spectrum 66

rheology 11, 21

rheological element 27

rigid plastic matter, Saint-Venant element 27

serial connection 36

stiffness 46

- conditional s. 50

strain rate 75

strain tensor, deformation 22

stress tensor 22

structural form 27

test

- creep 44

- relaxation 45

thermodynamics 17

thermodynamic consistency 18, 26, 30, 32, 83, 118

threshold 33

- compressive 33, 44, 121

- tensile 33, 44, 121

variation

- of function 63
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variational inequality 33, 118,

viscoelastic, viscoelasticity 12, 41, 24,

viscous member, viscous element 27, 30
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číslo 6219.

85 – 201 – 2025

ISBN 978-80-227-5479-8
DOI: 10.61544/EUAS3846




