PROGRESÍVNE MATERIÁLY V KONŠTRUKCIÁCH BUDOV: UDRŽATEĽNOSŤ A MOŽNOSTI ZVYŠOVANIA ÚČINNOSTI
Miroslav Čekon
miroslav.cekon@stuba.sk
Katedra materiálového inžinierstva a fyziky
Stavebná fakulta STU v Bratislave
Rossella Cottone
rossella.cottone@stuba.sk
Katedra materiálového inžinierstva a fyziky
Stavebná fakulta STU v Bratislave
Peter Hanuliak
peter.hanuliak@stuba.sk
Katedra konštrukcií pozemných stavieb
Stavebná fakulta STU v Bratislave
Abstract:
This publication explores the integration of progressive materials and innovative technologies in building construction to enhance energy efficiency and sustainability. Primarily focused on providing building technology students with an overview, it reviews global environmental challenges and principles of sustainable development, emphasizing the role of advanced materials in creating energy-efficient and environmentally responsible building envelopes. Key concepts discussed include solar energy utilization, nanotechnology, transparent insulation, phase change materials, and advanced glazing systems. The work examines the development, integration, and functionalities of these materials in walls, facades, and windows, highlighting their impact on energy conservation, indoor environmental quality, and overall building performance. Furthermore, it addresses solar wall design and offers a perspective on achieving effective, sustainable solutions that promote the development of novel construction approaches and technologies. The publication aims to provide insights not only for students in the field of Building Engineering and Building Technology at Slovak University of Technology but also for future engineers, architects, and researchers involved in employing renewable solar energy utilization and passive designs while designing more sustainable buildings.
DOI: 10.61544/LNKY1865
Literatúra:
[1] Giaoutzi, M.; Nijkamp, P. Decision support models for regional sustainable development: an application of geographic information systems and evaluation models to the Greek Sporades Islands. Avebury, Aldershot, Hants, England, 1993.
[2] van den Bergh, J. C. J. M. Ecological economics and sustainable development: theory, methods, and applications. Cheltenham, UK: Edward Elgar, 1996.
[3] Elkington, J. Cannibals with forks: the triple bottom line of 21st century business. Gabriola Island, BC; Stony Creek, CT: New Society Publishers, 1998. dostupné: https://search.library.wisc.edu/catalog/999846539502121.
[4] IEA, IRENA, UNSD, Svetová banka, WHO. Tracking SDG 7: The Energy Progress Report. Washington, DC: Svetová banka, 2025. dostupné: https://www.worldbank.org/en/topic/energy/publication/tracking-sdg-7-the-energy-progress-report-2025.
[5] OECD. OECD Environmental Performance Reviews: Slovenská republika 2024. Paríž: OECD, 2024.
[6] Sharma, S.; Sharma, N. K. Advanced materials contribution towards sustainable development and its construction for green buildings. Materials Today: Proceedings, zv. 68, 2022, s. 968–973.
[7] Yrieix, B. Future trends in materials for thermal insulation and building envelope. Presentation, September 2015. DOI: 10.13140/RG.2.1.1505.8323. Conference: Mapping the future of materials science, Sèvres, France. Affiliation: SF2M.
[8] Lang, S.; Drück, H.; Bestenlehner, D. Chapter 8 - Ultrahigh temperature thermal insulation. In: Datas, A., ed. Ultra-high temperature thermal energy storage, transfer and conversion. Woodhead Publishing, 2021, s. 201–219.
[9] Asdrubali, F.; Desideri, U. Chapter 6 - Building Envelope. In: Handbook of energy efficiency in buildings. Butterworth-Heinemann, 2019, s. 295–439.
[10] Jelle, B. P. Traditional, state-of-the-art and future thermal building insulation materials and solutions — Properties, requirements and possibilities. Energy and Buildings, zv. 43, zv. 10, 2011, s. 2549–2563.
[11] Lee, S. W.; Lim, C. H.; Salleh, E. I. B. Reflective thermal insulation systems in building: A review on radiant barrier and reflective insulation. Renewable and Sustainable Energy Reviews, zv. 65, 2016, s. 643–661.
[12] Baetens, R.; Jelle, B. P.; Thue, J. V.; Tenpierik, M. J.; Grynning, S.; Uvsløkk, S.; Gustavsen, A. Vacuum insulation panels for building applications: a review and beyond. Energy and Buildings, zv. 42, 2010, s. 147–172.
[13] Berardi, U. Aerogel-enhanced insulation for building applications. In: Pacheco-Torgal, F.; Diamanti, M. V.; Nazari, A.; Granqvist, C. G.; Pruna, A.; Amirkhanian, S., eds. Nanotechnology in eco-efficient construction. 2nd ed. Woodhead Publishing, 2019, s. 395–416.
[14] Berardi, U.; M. Naldi. The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance. Energy and Buildings, zv. 144, s. 262-275, 2017.
[15] Jelle, B. P. Nano-based thermal insulation for energy-efficient buildings. In: Pacheco-Torgal, F.; Rasmussen, E.; Granqvist, C.-G.; Ivanov, V.; Kaklauskas, A.; Makonin, S., eds. Start-up creation. Woodhead Publishing, 2016. s. 129-181.
[16] Yang, T.; W. Liu; G. J. Kramer; Q. Sun. Seasonal thermal energy storage: a techno-economic literature review. Renewable and Sustainable Energy Reviews, zv. 139, s. 110732, 2021.
[17] Borri, E.; G. Zsembinszki; L. F. Cabeza. Recent developments of thermal energy storage applications in the built environment: a bibliometric analysis and systematic review. Applied Thermal Engineering, zv. 189, s. 116666, 2021.
[18] Gholamibozanjani, G.; M. Farid. A comparison between passive and active PCM systems applied to buildings. Renewable Energy, zv. 162, s. 112–123, 2020.
[19] Baetens, R.; B. P. Jelle; A. Gustavsen. Phase change materials for building applications: a state-of-the-art review. Energy and Buildings, zv. 42, č. 9, s. 1361–1368, 2010.
[20] Faraj, K.; M. Khaled; J. Faraj; F. Hachem; C. Castelain. A review on phase change materials for thermal energy storage in buildings: heating and hybrid applications. Journal of Energy Storage, zv. 33, s. 101913, 2021.
[21] Wi, S.; J. Seo; S.-G. Jeong; S. J. Chang; Y. Kang; S. Kim. Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings. Solar Energy Materials and Solar Cells, zv. 143, s. 168–173, 2015.
[22] Yu, S.; S.-G. Jeong; O. Chung; S. Kim. Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Solar Energy Materials and Solar Cells, zv. 120, s. 549–554, 2014.
[23] Jeong, S.-G.; J.-H. Lee; J. Seo; S. Kim. Thermal performance evaluation of bio-based shape stabilized PCM with boron nitride for energy saving. International Journal of Heat and Mass Transfer, zv. 71, s. 245–250, 2014.
[24] Wen, R.; W. Zhang; Z. Lv; Z. Huang; W. Gao. A novel composite phase change material of stearic acid/carbonized sunflower straw for thermal energy storage. Materials Letters, zv. 215, s. 42–45, 2018.
[25] Jeon, J.; J. H. Park; S. Wi; S. Yang; Y. S. Ok; S. Kim. Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials. Environmental Research, zv. 172, s. 637–648, 2019.
[26] Mehling, H.; L. F. Cabeza. Heat and cold storage with PCM: an up-to-date introduction into basics and applications. In: Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
[27] Zalba, B.; J. M. Marín; L. F. Cabeza; H. Mehling. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, zv. 23, č. 3, s. 251–283, 2003.
[28] Cabeza, L. F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A. I. Materials used as PCM in thermal energy storage in buildings: a review. Renewable and Sustainable Energy Reviews, zv. 15, č. 3, s. 1675–1695, 2011.
[29] Zhou, D.; Zhao, C. Y.; Tian, Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy, zv. 92, s. 593–605, 2012.
[30] Zhou, L.; Yang, L. A method to calculate the effective thermal conductivity of spherical particle-laden composite. IOP Conference Series: Materials Science and Engineering, zv. 493, s. 012049, 2019.
[31] Jankowski, N. R. Phase change materials for vehicle and electronic transient thermal systems. University of Maryland, College Park, 2020. ProQuest Dissertations & Theses, no. 28156652.
[32] Boussaba, L.; Foufa, A.; Makhlouf, S.; Lefebvre, G.; Royon, L. Elaboration and properties of a composite bio-based PCM for an application in building envelopes. Construction and Building Materials, zv. 185, s. 156–165, 2018.
[33] Navarro, L. et al. Thermal energy storage in building integrated thermal systems: a review. Part 1. Active storage systems. Renewable Energy, zv. 88, s. 526–547, 2016.
[34] de Gracia, A.; Cabeza, L. F. Phase change materials and thermal energy storage for buildings. Energy and Buildings, zv. 103, s. 414–419, 2015.
[35] Salunkhe, P. B.; Shembekar, P. S. A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and Sustainable Energy Reviews, zv. 16, č. 8, s. 5603–5616, 2012.
[36] Liu, Z. et al. A review on macro-encapsulated phase change material for building envelope applications. Building and Environment, zv. 144, s. 281–294, 2018.
[37] Xin, H. et al. Preparation and performance research of functional geopolymer filled with microencapsulated phase change materials enhanced by modified graphite. Journal of Building Engineering, zv. 60, s. 105169, 2022.
[38] Zhang, W. et al. Lauric-stearic acid eutectic mixture/carbonized biomass waste corn cob composite phase change materials: preparation and thermal characterization. Thermochimica Acta, zv. 674, s. 21–27, 2019.
[39] Gu, X.; Liu, P.; Liu, C.; Peng, L.; He, H. A novel form-stable phase change material of palmitic acid-carbonized pepper straw for thermal energy storage. Materials Letters, zv. 248, s. 12–15, 2019.
[40] Simou, Z. a kol. Thermal evaluation and optimization of a building heating system: radiant floor coupled with a solar system. Journal of Building Pathology and Rehabilitation, zv. 9, č. 1, s. 24, 2024.
[41] Lin, W.; Ma, Z.; Ren, H.; Liu, J.; Li, K. Solar thermal energy storage using paraffins as phase change materials for air conditioning in the built environment. In: Paraffin - an Overview. IntechOpen, 2019.
[42] Masood, U.; Haggag, M.; Hassan, A.; Laghari, M. Evaluation of phase change materials for pre-cooling of supply air into air conditioning systems in extremely hot climates. Buildings, zv. 14, s. 95, 2024.
[43] de Gracia, A.; Navarro, L.; Castell, A.; Ruiz-Pardo, Á.; Álvarez, S.; Cabeza, L. F. Thermal analysis of a ventilated facade with PCM for cooling applications. Energy and Buildings, zv. 65, s. 508–515, 2013.
[44] Rathore, P. K. S.; Gupta, N. K.; Yadav, D.; Shukla, S. K.; Kaul, S. Thermal performance of the building envelope integrated with phase change material for thermal energy storage: an updated review. Sustainable Cities and Society, zv. 79, s. 103690, 2022.
[45] Kimura, H.; Kai, J. Phase change stability of CaCl₂·6H₂O. Solar Energy, zv. 33, č. 6, s. 557–563, 1984.
[46] GlassX AG: GlassX AG brožúra [online]. GlassX AG: ©2005. Dostupné na: https://www.glassx.ch/
[47] Mehta, A. Introduction to the electromagnetic spectrum and spectroscopy. Analytical Chemistry, 2011. dostupné na: https://pharmaxchange.info/2011/08/introduction-to-the-electromagnetic-spectrum-and-spectroscopy/
[48] Qasim, A. A.; Abdullah, M. F. L.; Talib, R.; Gheni, H. M.; Omar, K. A.; Abdulrahman, A. M. Visible light communication: the next future generation system. In: 2019 International Conference on Information Science and Communication Technology (ICISCT), Karachi, Pakistan, 2019, s. 1–7.
[49] Davies, A. M. C. An introduction to near infrared (NIR) spectroscopy. Norwich Near Infrared Consultancy, 10 Aspen Way, Cringleford, Norwich NR4 6UA, UK.
[50] Wong, I. L.; Eames, P. C.; Perera, R. S. A review of transparent insulation systems and the evaluation of payback period for building applications. Solar Energy, zv. 81, s. 1058–1071, 2007.
[51] Zhang, Q.; Yang, X.; Li, P.; Huang, G.; Feng, S.; Shen, C.; Han, B.; Zhang, X.; Jin, F.; Xu, F.; Lu, T. J. Bioinspired engineering of honeycomb structure – Using nature to inspire human innovation. Progress in Materials Science, zv. 74, s. 332–400, 2015.
[52] Sun, Y.; Wilson, R.; Wu, Y. A review of transparent insulation material (TIM) for building energy saving and daylight comfort. Applied Energy, zv. 226, s. 713–729, 2018.
[53] Sun, Y.; Wu, Y.; Wilson, R. Analysis of the daylight performance of a glazing system with parallel slat transparent insulation material (PS-TIM). Energy and Buildings, zv. 139, s. 616–633, 2017.
[54] Berardi, U. The development of a monolithic aerogel glazed window for an energy retrofitting project. Applied Energy, zv. 154, s. 603–615, 2015.
[55] Buratti, C.; Belloni, E.; Merli, F.; Zinzi, M. Aerogel glazing systems for building applications: a review. Energy and Buildings, zv. 231, s. 110587, 2021.
[56] Kessentini, H.; Castro, J.; Capdevila, R.; Oliva, A. Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system. Applied Energy, zv. 133, s. 206–223, 2014.
[57] Kessentini, H., Capdevila Paramio, R., Lehmkuhl Barba, O., Castro González, J., Oliva Llena, A., & others. (2012). Numerical simulation of heat transfer and fluid flow in a flat plate solar collector with TIM and ventilation channel. In A: ISES Europe Solar Conference. Solar energy for a brighter future: Book of proceedings: EuroSun 2012. Rijeka.
[58] Favoino, F. a kol. The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies. Applied Energy, zv. 156, 2015, s. 115.
[59] Incropera, F. P.; DeWitt, D. P. Fundamentals of heat and mass transfer. 4th ed. New York: Wiley, 1996.
[60] Obzor. Technika: encyklopédia. Bratislava: Vydavateľstvo Obzor, 1963.
[61] Cuce, E.; Cuce, P. M. Vacuum glazing for highly insulating windows: recent developments and future prospects. Renewable and Sustainable Energy Reviews, zv. 54, s. 1345–1357, 2016.
[62] Memon, S.; Farukh, F.; Kandan, K. Effect of cavity vacuum pressure diminution on thermal performance of triple vacuum glazing. Applied Sciences, zv. 8, č. 9, s. 1705, 2018.
[63] Katsura, T.; Memon, S.; Radwan, A.; Nakamura, M. Thermal performance analysis of a new structured-core translucent vacuum insulation panel in comparison to vacuum glazing: experimental and theoretically validated analyses. Solar Energy, zv. 199, s. 326–346, 2020.
[64] Casini, M. Smart windows for energy efficiency of buildings. In: Proceedings of the Second International Conference on Advances in Civil, Structural and Environmental Engineering (ACSEE). 2014.
[65] Hočevar, M.; Opara Krašovec, U. A photochromic single glass pane. Solar Energy Materials and Solar Cells, zv. 186, s. 111–114, 2018.
[66] Aguilar-Santana, J. L.; Jarimi, H.; Velasco-Carrasco, M.; Riffat, S. Review on window-glazing technologies and future prospects. International Journal of Low-Carbon Technologies, zv. 15, č. 1, s. 112–120, 2019.
[67] Araújo, G. R.; Teixeira, H.; Gomes, M. G.; Rodrigues, A. M. Multi-objective optimization of thermochromic glazing properties to enhance building energy performance. Solar Energy, zv. 249, s. 446–456, 2023.
[68] Vigna, I.; Bianco, L.; Goia, F.; Serra, V. Phase change materials in transparent building envelopes: a SWOT analysis. Energies, zv. 11, č. 1, s. 111, 2018.
[69] Goia, F. Thermo-physical behaviour and energy performance assessment of PCM glazing system configurations: a numerical analysis. Frontiers of Architectural Research, zv. 1, č. 4, s. 341–347, 2012.
[70] Zhang, Z.; Wang, Y.; Huang, Y.; Karkri, M.; Tankari, M. A.; Ibos, L. Experimental study on optical properties of various paraffin-based PCM glazing units and radiative transfer model optimization. Optical Materials, zv. 158, s. 116431, 2025.
[71] Casini, M. Active dynamic windows for buildings: a review. Renewable Energy, zv. 119, s. 923–934, 2018.
[72] Wen, J.; Meng, X. Spectral analysis of the discoloration process in architectural electrochromic glass. Scientific Reports, zv. 15, s. 7222, 2025.
[73] Baetens, R.; Jelle, B. P.; Gustavsen, A. Vacuum insulation panels for building applications: a review and beyond. Energy and Buildings, zv. 42, č. 2, s. 147–172, 2010.
[74] Konis, K.; Selkowitz, S. Effective daylighting with high-performance facades: emerging design practices. Springer, 2017.
[75] Feng, W.; Zou, L.; Gao, G.; Wu, G. et al. Gasochromic smart window: optical and thermal properties, energy simulation, and feasibility analysis. Solar Energy Materials and Solar Cells, zv. 144, s. 316–323, 2016.
[76] Wittwer, V.; Datz, M.; Ell, J.; Georg, A.; et al. Gasochromic windows. Solar Energy Materials and Solar Cells, zv. 84, č. 1, s. 305–314. 2004.
[77] Zakirullin, R. Grating optical filters for smart windows: materials, calculations and prospects. AIMS Materials Science, zv. 7, č. 6, s. 720–771, 2020.
[78] Ghosh, A.; Norton, B.; Duffy, A. Measured overall heat transfer coefficient of a suspended particle device switchable glazing. Applied Energy, zv. 159, s. 362–369, 2015.
[79] Ghosh, A.; Norton, B.; Duffy, A. Measured thermal performance of a combined suspended particle switchable device evacuated glazing. Applied Energy, zv. 169, s. 469–480, 2016.
[80] Hemaida, A.; Ghosh, A.; Sundaram, S.; Mallick, T. K. Evaluation of thermal performance for a smart switchable adaptive polymer dispersed liquid crystal (PDLC) glazing. Solar Energy, zv. 195, s. 185–193, 2020.
[81] Ferrara, M.; Bengisu, M. Materials that change color: smart materials, intelligent design. Springer, 2014, s. 9–60.
[82] Ke, Y.; Chen, J.; Lin, G.; Wang, S.; et al. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Advanced Energy Materials, zv. 9, č. 39, 2019.
[83] Chen, L.; Busfield, J. J.; Carpi, F. Electrically tunable directional light scattering from soft thin membranes. Optics Express, zv. 28, č. 14, s. 20669–20685, 2020.
[84] Kim, H.-N.; Ge, D.; Lee, E.; Yang, S. Multistate and on-demand smart windows. Advanced Materials, zv. 30, č. 43, 2018.
[85] Shian, S.; Clarke, D. Electrically tunable window device. Optics Letters, zv. 41, č. 6, s. 1289–1292, 2016.
[86] Hraška, Jozef. Konštrukcie pozemných stavieb: základná terminológia a klasifikácia konštrukcií pozemných stavieb, požiadavky na pozemné stavby a zásady navrhovania ich konštrukcií, normy a normalizácia. Bratislava : Spektrum STU, 2017. 120 s. ISBN 978-80-227-4748-6.
[87] Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, zv. 207, 2020, s. 109482.
[88] Hraška, Jozef. Konštrukcie pozemných stavieb: masívne steny. Bratislava : Spektrum STU, 2017. 139 s. ISBN 978-80-227-4759-2.
[89] Prieto, A.; Knaack, U.; Auer, T.; Klein, T. Solar façades – Main barriers for widespread façade integration of solar technologies. Journal of Facade Design and Engineering, zv. 5(č.1), s. 51–62, 2017.
[90] Sadineni, S. B.; Madala, S.; Boehm, R. F. Passive building energy savings: A review of building envelope components. Renewable and Sustainable Energy Reviews, zv. 15(8), s. 3617–3631, 2011.
[91] Soares, N.; Costa, J. J.; Gaspar, A. R.; Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy and Buildings, zv. 59, s. 82–103, 2013.
[92] Alam, M.; Singh, H.; Limbachiya, M. C. Vacuum insulation panels (VIPs) for building construction industry—A review of the contemporary developments and future directions. Applied Energy, zv. 88, s. 3592–3602, 2011.
[93] Baetens, R.; Jelle, B. P.; Gustavsen, A. Aerogel insulation for building applications: a state-of-the-art review. Energy and Buildings, zv. 43, č. 7, s. 761–769, 2011.
[94] Orel, Z. C.; Klanjšek, G. M. Spectrally selective paint coatings: preparation and characterization. Solar Energy Materials and Solar Cells, zv. 68, s. 337–353, 2011.
[95] Tabadkani, A.; Roetzel, A.; Li, H. X.; Tsangrassoulis, A. Design approaches and typologies of adaptive facades: a review. Automation in Construction, zv. 121, s. 103450, 2021.
[96] Davies, M. A wall for all seasons. RIBA Journal, zv. 88, č. 2, s. 55–57, 1981.
[97] Strauss, H. AM Envelope: The potential of additive manufacturing for facade constructions. A+BE | Architecture and the Built Environment, zv. 3, č. 1, s. 1–270, 2017.
[98] Favoino, F.; Goia, F.; Perino, M.; Serra, V. Experimental assessment of the energy performance of an advanced responsive multifunctional façade module. Energy and Buildings, zv. 68, s. 647–659, 2014.
[99] Loonen, R. C. G. M.; Trčka, M.; Cóstola, D.; Hensen, J. L. M. Climate adaptive building shells: state-of-the-art and future challenges. Renewable and Sustainable Energy Reviews, zv. 25, s. 483–493, 2013.
[100] Goia, F.; Perino, M.; Serra, V.; Zanghirella, F. Toward an active, responsive, and solar building envelope. Journal of Green Building, zv. 5, č. 4, s. 121–136, 2010.
[101] Böke, J. (. Thinking-skins: cyber-physical systems as foundation for intelligent adaptive façades. A+BE | Architecture and the Built Environment, zv. 10, č. 8, s. 1–286, 2020 (adopted from U. Knaack et al., Facades. Principles of Construction, Basel: Birkhäuser Verlag AG, 2007).
[102] Perino, M.; Serra, V. Switching from static to adaptable and dynamic building envelopes: a paradigm shift for the energy efficiency in buildings. Journal of Facade Design and Engineering, zv. 3, č. 2, s. 143–163. 2017.
[103] Ahmed, M. M. S. a kol. Development of intelligent façade based on outdoor environment and indoor thermal comfort. Procedia Technology, zv. 19, s. 742–749. 2015.
[104] Aelenei, D.; Aelenei, L.; Vieira, C. P. Adaptive façade: concept, applications, research questions. Energy Procedure, zv. 91, s. 269–275. 2016.
[105] Romano, R.; Aelenei, L.; Aelenei, D.; Mazzucchelli, E. What is an adaptive façade? analysis of recent terms and definitions from an international perspective. Journal of Facade Design and Engineering, zv. 6, s. 65–76. 2018.
[106] Ochoa, C. E.; Capeluto, I. G.. Intelligent facades in hot climates: energy and comfort strategies for successful application. 122, 2008.
[107] Dovjak, M.; Kukec, A. Creating healthy and sustainable buildings: an assessment of health risk factors. Springer Cham. 2019.
[108] Green Home Guide. A history of the solar house [online]. 2021. dostupné na: https://www.greenhomeguide.com/
[109] Denzer, A.; Novikova-Kinney, P. Arthur T. Brown. Pioneer of passive solar architecture [online]. SOLAR 2010. Dostupné na: https://static1.squarespace.com/static/512f8523e4b02ab8ee84fa44/t/5162f5ffe4b01df404d80768/1365439999701/Denzer+Arthur+Brown+2010.pdf
[110] Omidreza Saadatian; Chin Haw Lim; Kamaruzzaman Sopian; Elias Salleh. A state of the art review of solar walls: concepts and applications. Journal of Building Physics, zv. 37, s. 55–79. 2013.
[111] Stazi, F.; Mastrucci, A.; Di Perna, C. The behaviour of solar walls in residential buildings with different insulation levels: an experimental and numerical study. Energy and Buildings, zv. 47, s. 217–229. 2012.
[112] Chi-Ming, L.; Hokoi, S. Solar façades: a review. Building and Environment, zv. 91, s. 152–165, 2015.
[113] Quesada, G.; Rousse, D.; Dutil, Y.; Badache, M.; Hallé, S. A comprehensive review of solar facades. Opaque solar facades. Renewable and Sustainable Energy Reviews, zv. 16, č. 5, s. 2820–2832, 2012.
[114] Omrany, H.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Raahemifar, K.; Tookey, J. Application of passive wall systems for improving the energy efficiency in buildings: a comprehensive review. Renewable and Sustainable Energy Reviews, zv. 62, s. 1252–1269, 2016.
[115] Abbassi, F.; Dehmani, L. Experimental and numerical study on thermal performance of an unvented Trombe wall associated with internal thermal fins. Energy and Buildings, zv. 15, s. 119–128, 2016.
[116] Hu, Z.; He, W.; Hong, X.; Ji, J.; Shen, Z. Numerical analysis on the cooling performance of a ventilated Trombe wall combined with venetian blinds in an office building. Energy and Buildings, zv. 126, s. 14–27, 2016.
[117] Stazi, F.; Mastrucci, A.; Perna, C. D. Trombe wall management in summer conditions: an experimental study. Solar Energy, zv. 86, č. 9, s. 2839–2851, 2012.
[118] Hu, Z.; He, W.; Ji, J.; Zhang, S. A review on the application of Trombe wall system in buildings. Renewable and Sustainable Energy Reviews, zv. 70, s. 976–987, 2017.
[119] Briga Sá, A.; Boaventura-Cunha, J.; Lanzinha, J.-C.; Paiva, A. An experimental analysis of the Trombe wall temperature fluctuations for high-range climate conditions: influence of ventilation openings and shading devices. Energy and Buildings, zv. 138, s. 546–558, 2017.
[120] Szyszka, J. From direct solar gain to Trombe wall: an overview on past, present and future developments. Energies, zv. 15, č. 23, s. 8956, 2022.
[121] Chaichan, M. T.; Abaas, K. I.; Al-Zubaidi, D. S. M. A study of a hybrid solar heat storage wall (Trombe wall) utilizing paraffin wax and water. Journal of Research in Mechanical Engineering, zv. 2, č. 11, s. 1–7. Quest Journals. 2016.
[122] Ji, J.; Luo, C.; Sun, W.; Yu, H.; He, W.; Pei, G. An improved approach for the application of Trombe wall system to building construction with selective thermo-insulation façades. Chinese Science Bulletin, zv. 54, s. 1949–1956, 2009.
[123] Chen, W.; Liu, W. Numerical analysis of heat transfer in a passive solar composite wall with porous absorber. Applied Thermal Engineering, zv. 28, s. 1251–1258, 2008.
[124] Zalewski, L.; Chantant, M.; Lassue, S.; Duthoit, B. Experimental thermal study of a solar wall of composite type. Energy and Buildings, zv. 25, s. 7–18, 1997.
[125] Szyszka, J. Experimental evaluation of the heat balance of an interactive glass wall in a heating season. Energies, zv. 13, s. 632, 2020.
[126] Turrin, M.; Tenpierik, M.; de Ruiter, P.; van der Spoel, W.; Chang Lara, C.; Heinzelmann, F.; Teuffel, P.; van Bommel, W. DoubleFace: adjustable translucent system to improve thermal comfort. SPOOL, zv. 1, č. 2, s. 5–9, 2014.
[127] Tenpierik, M.; Turrin, M.; Wattez, Y.; Cosmatu, T.; Tsafou, S. Double Face 2.0: a lightweight translucent adaptable Trombe wall. SPOOL, zv. 5, č. 2, 2018.