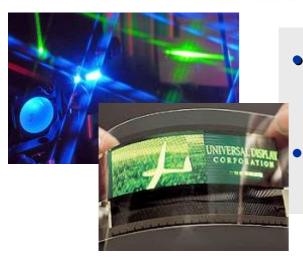


NCP meeting 13 May 2011, Brussels

ICT WP2011-2012 - call 8:

Objective 3.5: Core and Disruptive Photonic Technologies

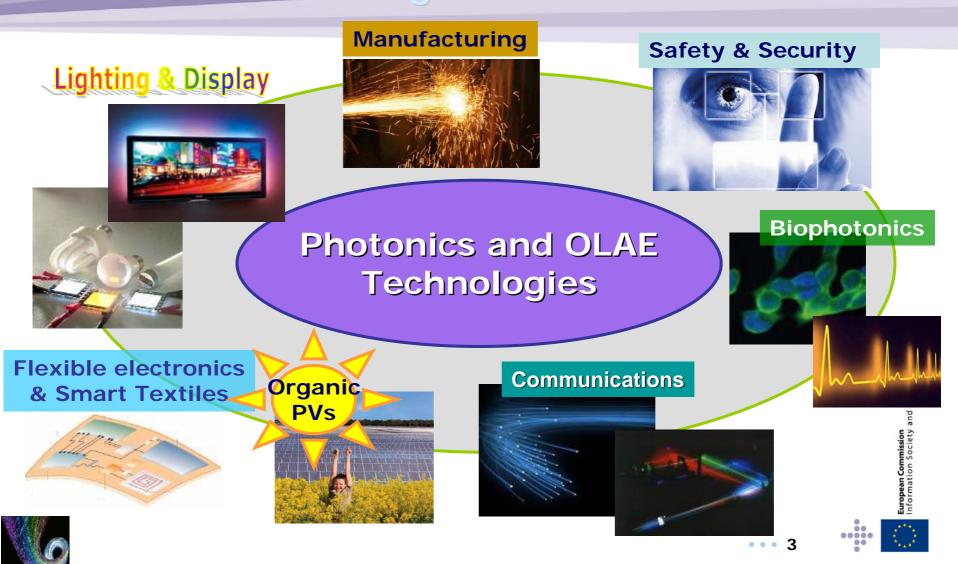

DG INFSO Photonics Unit Bart Van Caenegem Project Officer

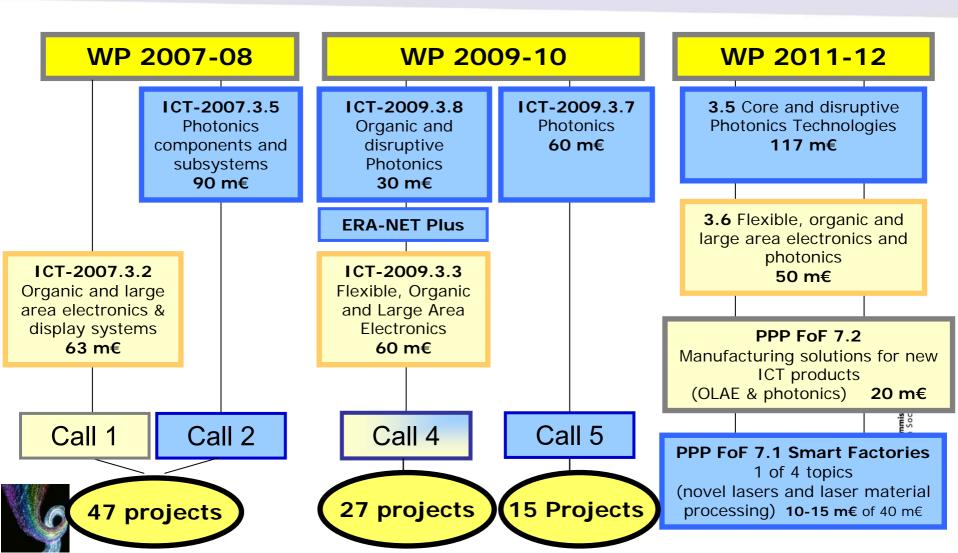
European Commission Information Society and Media

ICT WP 2011-2012 Priorities for Photonics and OLAE

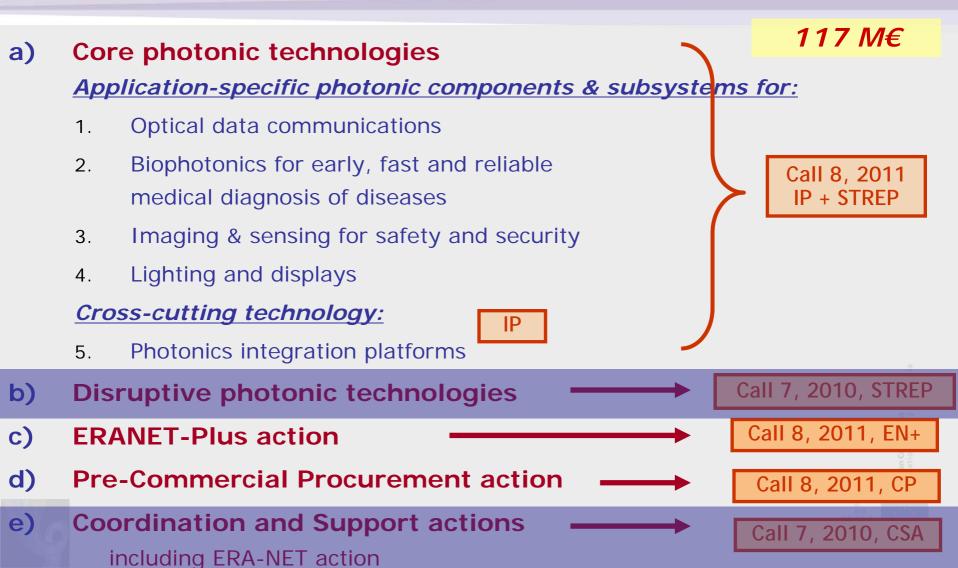
- Reinforce European strengths in key application sectors and technologies
 Create breaktbrough advances for
 - Create breakthrough advances for new products and markets

Supplemented by actions to:


- Foster cooperation with Member States and support coordination of innovation clusters, national platforms and Photonics21 ETP
- Support SMEs, and training & education leading to a competitive advantage of European photonics and OLAE industry



Photonics and OLAE in FP7: 89 R&D currently running projects Budget 300 M€



Photonics and Large Area & Organic Electronics: FP7 budget evolution

Challenge 3: Alternative Paths to Components and Systems Objective 3.5 "Core and Disruptive Photonic Technologies"

Core and Disruptive Photonic Technologies a) Core photonic technologies

Call 8, opens 20 July 2011, closes 17 Jan 2012, 79 M€

Target Outcomes:

Advance R&D in core photonic technologies. Focus is on:

- <u>Application-specific photonic components and sub-systems</u> Priority is on novel or 'break-through' approaches, rather than incremental developments
- 2. <u>Cross-cutting technology</u> for device integration
- \rightarrow Actions should be driven by user-requirements

Expected Impact:

- 1. Reinforce European industrial leadership, competitiveness and market share and/or provide significant societal impact
- 2. Secure a European manufacturing base for integrated components and secure industrial leadership

a.1 - Optical data communications

Call 8, opens 20 July 2011, closes 17 Jan 2012

- i. <u>Communication networks</u>: more transparent, dynamic, energy efficience and faster
 - <u>Core networks</u>: Technology for truly cost effective transport at 100 Gb/s per channel, scalable towards 100 Tb/s systems;
 - <u>Access networks</u>: Affordable technology enabling 1-10 Gb/s per client over more than 100 km

ii. Optical interconnects:

- Cost and energy effective technology for Tb/s optical links in short range communication
- Applications range from on-board and board-to-board links at smaller scale to links in data centres and LAN

"Radio-over-fibre" techniques (in access or LAN networks)

Consortia should include researchers, component manufacturers and suppliers of communication equipment jective 3.5 "Core and Disruptive Photonic Technologies" a.2 - Biophotonics for early, fast and reliable medical diagnosis

Call 8, opens 20 July 2011, closes 17 Jan 2012

- Early, fast and reliable diagnosis of diseases (e.g. cancer, infectious and eye-related diseases)
- & STREP Applications: From point-of-care diagnosis to functional imaging
- Typical issues: High sensitivity, selectivity, resolution, depth of penetration
- Emphasis on strongly interdisciplinary work involving also medical/biomedical end-users
- Technical results should undergo preclinical validation, with clinical trials being excluded

a.3 - Imaging and sensing for safety and security

Call 8, opens 20 July 2011, closes 17 Jan 2012& STREP

- i. CMOS integrated, high-performance mega-pixel image sensors operating at room temperature and low power. Focus is on:
 - **Single-photon detection** (video-rate readout speed, very high dynamic range)
 - Functional integration based on smart pixels (sub-picosecond time resolution, hyper-/multi-spectral resolution, polarisation sensitivity)
- **ii. Widely tuneable** high-performance **photonic sources** for highly sensitive, selective and reliable **detection of hazardous substances**

Overarching issues:

- Design goals: compact and cost-effective devices
- Technical results should be validated for safety and security applications

→ Consortia should include researchers, component manufacturers
and suppliers of safety & security imaging/sensing equipment

Objective 3.5 "Core and Disruptive Photonic Technologies" a.4 – Lighting and Displays

Call 8, opens 20 July 2011, closes 17 Jan 2012 Company Street engines

High brightness LEDs and light engines

Focus on:

- Improved efficacy at high brightness (warm white with efficacy > 130 Im/W, CRI \geq 90, consistent colour over 25000 hours)
- High brightness, high efficiency green components intensity peak around 540 nm
- Novel approach to white components (e.g. new phosphors, monolithic sources, hybrid approaches)

 \rightarrow System integration issues may be addressed (to some extent)

Significant system / operating cost reduction potential expected

Consortia should involve LED suppliers and/or manufacturers

Objective 3.5 "Core and Disruptive Photonic Technologies" a.5 – Cross Cutting Technology

Call 8, opens 20 July 2011, closes 17 Jan 2012

Photonics integration platforms for high volume

- manufacturing of photonic integrated circuits ("PICs") that combine active and passive components
- Address a range of <u>different application fields</u>
- Address also the relevant <u>design</u>, <u>modelling and simulation tools</u> and <u>generic manufacturing and packaging technology</u>
- Present a credible route to industrial manufacturing in Europe
- The technology must be <u>scalable</u> for increasing PIC complexity

Objective 3.5 "Core and Disruptive Photonic Technologies b) Disruptive Photonic Technologies

Call 7, opens 28 Sept 2010, closes 18 Jan 2011, 20 M€

Disruptive photonic technologies

- Disruptive photonic technologies ... are technologies at the proof-of-principle stage that offer a porrept break-through in functionality, performance, component size or cost
- ... often exploit effects at the limits of light matter interaction (e.g. plasmonics, nano-photoni **In Call 7** Is, ...) or new materials

Objective

- Bring them from the research lab closer to applications
- Demonstrate their industrial potential through a functional component

Expected impact

Longer-term potential for industrial leadership or societal benefits,

••• 12

Opportunities for new applications

Cobjective 3.5 "Core and Disruptive Photonic Technologies" C) ERANET-Plus action

Call 8, opens 20 July 2011, closes 17 Jan 2012, 10 M€

- A joint call for proposals on a photonics topic of strategic interest, involving national and/or regional grant programmes
- Expected Impact:

Foster cooperation and alignment between national/ regional/ EU-wide research programmes in topics of strategic interest

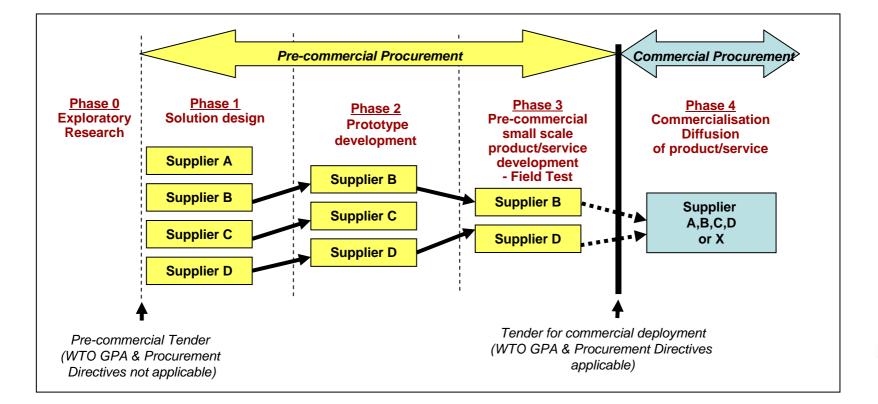
Objective 3.5 "Core and Disruptive Photonic Technologies"

d) Pre-Commercial Procurement (PCP)

NEW

Call 8, opens 20 July 2011, closes 17 Jan 2012, 3 M€

PCP action in Photonics


<u>Aim</u>: To achieve significant quality and/or efficiency improvements to public sector challenges through innovative photonics-based solutions

Expected Impact: accelerate the introduction of advanced photonic technologies and applications on the European market

A <u>PCP</u> action supports cooperation between <u>public authorities</u> to define together the mid-to-long term solution requirements and to procure **R&D services**, ensuring:

- Benefit and risk sharing between procurers and suppliers
- Competition and transparency in the procurement process
 - Compliance with legal framework without entailing State Aid

Objective 3.5 "Core and Disruptive Photonic Technologies" d) Pre-Commercial Procurement (PCP) (2)

European Commission nformation Society and Media

.....

••• 15

e) Coordination and Support Actions (2SA)

Call 7, opens 28 Sept 2010, closes 18 Jan 2011, 5 M€

- 1. ERA-NET for the coordination of national R&D programmes/activities
- 2. Technology road-maps for high power / high energy lasers
- 3. Coordination betw In Call 7 usters
- 4. Targeted international activities
- 5. Coordination of the European photonics RTD constituency in Photonics21
- 6. Access of SMEs and researchers to advanced technologies, design expertise and/or manufacturing facilities
- 7. Education and training actions

16

Challenge 3 - Objective 3.5 Instruments and indicative budget

Call 7, opens 28 Sept 2010, closes 18 Jan 2011

Call 8, opens 20 July 2011, closes 17 Jan 2012

Call 8

a.1 - a.4 (Communications, Biophotonics, Safety & Security, Lighting & Displays): IP and STREP

a.5 (Photonic Integration Platforms): **IP**

A minimum of 50% to IPs and a minimum of 30% to STREPs

- b (Disruptive Technologies): STREP Call 7 20 M€
- c (ERANET+): ERANET-Plus Call 8 10 M€
- d (*PCP*): CP-CSA Call 8 3 M€
- e (Coordination & Support Actions): CSAs Call 7 5 M€

More information

General information about the calls:

On Cordis FP7 homepage: <u>http://cordis.europa.eu/fp7/home_en.html</u>

Specific information on photonic related calls:

On Cordis Photonics homepage/calls: <u>http://cordis.europa.eu/fp7/ict/photonics/calls_en.html</u>

Presentation on:

«How to write a good proposal»: See Cordis Photonics homepage/calls

