Cyklus prednášok pod záštitou rektora STU Lecture series under the auspices of STU rector

Material parameters and damage identification based on artificial neural networks small-sample training

Drahomír NOVÁK

Brno University of Technology Faculty of Civil Engineering Institute of Structural Mechanics

Parameters of numerical models

- Usually, we want some numerical model to match measurements performed in laboratory or in situ.
- How do we find parameters of numerical models?
- by Inverse Analysis
- typically parameters of material (elastic modulus, density, strength, ...)

Latin Hypercube Sampling

LHS-mean

- <u>sample averages equal exactly</u> the mean values of variables;
- <u>variances</u> of the sample sets <u>are much closer to the target values</u> compared to other selection schemes;
- for some probability density functions (including e.g. Gaussian, Exponential, Laplace, Rayleigh, Logistic, Pareto, etc.) the integral can be solved analytically;
- for others, the extra effort of doing the numerical integration is definitely worthwhile.

Imposing statistical correlation

- Correlation matrices:
 - prescribed (target) T
 - generated (actual) A
- Difference matrix (error matrix): $\mathbf{E} = \mathbf{T} - \mathbf{A}$
- a suitable norm of the matrix E defined as an objective function: minimum among all possible rank combinations.

simulated annealing

Imposing statistical correlation – simulated annealing

- Probability to escape from local minima.
- Cooling decreasing of system excitation.
- Boltzmann PDF, energetic analogy.

 Performs much better than other widely used algorithms for correlation control, e.g. both Iman and Conover's Cholesky decomposition and Owen's Gram-Schmidt orthogonalization.

Hierarchical sampling

- in conventional LHS it is necessary to specify the number of simulations in advance;
 overcame by the Hierarchical Latin Hypercube Sampling;
- <u>the addition of simulations to the current sample set</u> (hierarchical refinement of sampling probabilities) while maintaining the desired correlation structure by employing an advanced correlation control algorithm for the extended part of the sample;
- the whole procedure of a cascade of sampling runs can be fully automated and the stopping criterion might be e.g. the significance of output statistics, or the desired computational time.

Nonparametric rank-order based sensitivity analysis A small-sample simulation of the Monte Carlo type

Sensitivity analysis:

• Nonparametric rank-order correlation between input variables and output response variable. $\tau_i = \tau(a_i, p_i), \quad i = 1, 2, ..., N$

Kendall tau:

Spearman's coefficient of correlation:

$$\tau_{i} = \tau \left(q_{ji}, p_{j} \right), \quad j = 1, 2, \dots, n$$

$$r^{s} = 1 - \frac{6 \sum_{i=1}^{n} d_{i}^{2}}{n(n-1)(n+1)}$$

- Robust uses only orders.
- Additional result of LHS simulation, no extra effort.
- Bigger correlation coefficient = high sensitivity.
- Relative measure of sensitivity (-1, 1).

Reliability analysis:

- Simplified rough estimates, as constrained by extremally small number of simulations (10–100)!
- Cornell safety index.
- Curve fitting.
- FORM, importance sampling, response surface...

Feasible Reliable Engineering Tool – FReET, version 1.5:

- multipurpose probabilistic software for statistical, sensitivity and reliability analysis of engineering problems;
- allows to simulate uncertainties

 of the problem at random variables level
 (typically in civil/mechanical engineering –
 material properties and loading,
 geometrical imperfections);
- developed at Brno University of Technology, Institute of Structural Mechanics.

"Random variables" window:

- friendly Graphical User Environment;
- 30 probability distribution functions (PDF), mostly 2-parametric, some 3-parametric, two 4-parametric (Beta PDF and normal PDF with a Weibullian left tail);
- unified description of random variables with the optional use of <u>statistical moments</u> or <u>parameters</u> or a <u>combination</u> of moments and parameters;
- PDF calculator.

"Statistical correlation" window:

- visualization in both Cartesian and parallel coordinates;
- also a weighting option.

"Limit state/response functions"

window:

- closed form (direct), using the implemented <u>Equation Editor (simple problems);</u>
- numerical (indirect), using <u>a user-defined DLL</u> <u>function</u> that can be prepared in practically any programming language (C++, Fortran, Delphi, etc.);
- <u>general interface to third-party software</u> using user-defined *.BAT or *.EXE programs based on input and output text communication files;
- multiple response functions assessed in the same simulation run.

Expression Evaluator ... a+b 5/384*(x1+x2)*x3^4/x6/x4/1e3-x3/200

SLS

NUM

"Reliability" window:

- histograms of output variables;
- sensitivity analyses;
- reliability estimates by various simulation and approximation methods;
- limit state functions;
- parametric studies;
- cost/risk assessment.

Probabilistic techniques:

- crude Monte Carlo simulation;
- Latin Hypercube Sampling (3 alternatives);
- Hierarchical Latin Hypercube Sampling;
- First Order Reliability Method (FORM);
- Curve fitting;
- Simulated Annealing employed for correlation control over inputs;
- Bayesian updating;

Applications: S33.24 bridge in Austria

- Jointless bridge
- Casting in the end of March 2009
- Testing after 28 days

Material parameters identification

[m]

Applications: S33.24 bridge in Austria

Selected parameters of steel:

		Coeff. Of							f _v
	Symbol	Unit	Mean	Variation	PDF	Source	E	1.0	0.60
Elastic Modulus	E	Gpa	210	0.03	LN	Literature	f _v	0.59	1.0
Yield stress	f _v	Мра	475	0.07	LN	Literature			

Selected parameters of concrete:

				Coeff. of			Variable	E	f _t	f _c	G _f	ε _c
	Symbol	Unit	Mean	Variation	PDF	Source	E	1.0	0.69	-0.9	0.5	0.9
Elastic Modulus	E	Мра	39500	0.1	Ν	Identification	f _t	0.70	1.0	-0.78	0.89	0.61
Poisson's ratio	v	-	0.20	0.05	LN	Literature	f	-0.86	-0.76	1.0	-0.61	-0.89
Tensile strength	f _t	Мра	2.90	0.09	Weibull	Identification	G _f	0.52	0.87	-0.60	1.0	0.49
Compressive strength	f _c	Мра	-28.90	0.1	LN	Literature	ε	0.85	0.61	-0.88	0.47	1.0
Specific fracture energy	G _f	N/m	178.00	0.13	Weibull	Identification						
Uniaxial compressive strain	ε _c	-	0.0018	0.15	LN	Literature						
Reduction of strength	C _{Red}	-	0.80	0.06	Rect.	Literature						
Critical comp. displacement	w _d	m	-0.0005	0.1	LN	Literature						
Specific material weight	ρ	MN/m ³	0.023	0.1	LN	Literature						

Applications: S33.24 bridge in Austria

ULS: g(X) = R(X) - E(X)

SLS: g(X) = Wlim(X) - W(X)

Eurocode:

60,00

 β = 4.7 for one year period Pf = 1.5E-6.

70,00

Load [KN/m']

80,00

90,00

Eurocode: β = 1.8 deflection limit of span: L/250 or L/500 US Standard Specifications: L/360 or L/500

8

7

6

5

4

3

2

1

0

50,00

Safety Index β [-]

Applications: railway sleeper

- pre-stressed railway sleeper (ŽPSV a.s.)
- model in ATENA 3D
- random dominant concrete parameters
- LHS simulations with imposed statistical correlation – 30 realizations
- probability of maximal crack width

->-Load_60 kN -D-Load_70 kN ---Load_80 kN ---Load_90 kN ----Load_100 kN

Conclusions

- efficient techniques of employing stochastic simulation methods were combined in FReET software - an advanced tool for the probabilistic assessment of user-defined problems at ultimate capacity and serviceability limit states
- degradation models implemented in FReET-D software can help users to choose appropriate models and assess the service life issue as applied to concrete structures - durability limit states
- SARA = complex integration of probabilistic engine (FReET) and nonlinear FEM (ATENA). Already hundreds applications/users worldwide, concrete structures, intensive development.
- ANN based material parameters and damage identification!

